Implied_Volatility {greeks} | R Documentation |
Computes the implied volatility for various options via Newton's method
Description
If the value of an option, and other (model)parameters like the risk-free interest rate, the time-to-maturity, and the dividend yield are known, the assumed volatility of the underlying asset, the implied volatility can be inferred. See Hull (2022).
Usage
Implied_Volatility(
option_price,
initial_price = 100,
exercise_price = 100,
r = 0,
time_to_maturity = 1,
dividend_yield = 0,
model = "Black_Scholes",
option_type = "European",
payoff = "call",
start_volatility = 0.3,
precision = 1e-06,
max_iter = 30
)
Arguments
option_price |
|
initial_price |
|
exercise_price |
|
r |
|
time_to_maturity |
|
dividend_yield |
|
model |
|
option_type |
in c("European", "American", "Geometric Asian", "Asian", "Digital") - the type of option to be considered |
payoff |
|
start_volatility |
initial guess |
precision |
precision of the computation |
max_iter |
maximal number of iterations of the approximation |
Value
Named vector containing the values of the Greeks specified in the
parameter greek
.
References
Hull, J. C. (2022). Options, futures, and other derivatives (11th Edition). Pearson
See Also
BS_Implied_Volatility for the special case option_type = "European" and payoff in c("call", "put")
Examples
Implied_Volatility(15, r = 0.05, option_type = "Asian",
payoff = "call")