| Lca {greed} | R Documentation |
Latent Class Analysis Model Prior class
Description
An S4 class to represent a Latent Class Analysis model
Such model can be used to cluster a data.frame X with several columns of factors with the following generative model :
\pi \sim \textrm{Dirichlet}(\alpha),
\forall k, \forall j, \quad \theta_{kj} \sim \textrm{Dirichlet}_{d_j}(\beta),
Z_i \sim \mathcal{M}_K(1,\pi),
\forall j=1, \ldots, p, \quad X_{ij}|Z_{ik}=1 \sim \mathcal{M}_{d_j}(1, \theta_{kj}),
These classes mainly store the prior parameters value (\alpha,\beta) of this generative model.
The Lca-class must be used when fitting a simple Latent Class Analysis whereas the LcaPrior-class must be used when fitting a CombinedModels-class.
Usage
LcaPrior(beta = 1)
Lca(alpha = 1, beta = 1)
Arguments
beta |
Dirichlet prior parameter for all the categorical feature (default to 1) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
Value
a LcaPrior-class object
a Lca-class object
See Also
Other DlvmModels:
CombinedModels,
DcLbm,
DcSbm,
DiagGmm,
DlvmPrior-class,
Gmm,
MoM,
MoR,
MultSbm,
Sbm,
greed()
Examples
LcaPrior()
LcaPrior(beta = 0.5)
Lca()
Lca(beta = 0.5)