| DiagGmm {greed} | R Documentation |
Diagonal Gaussian Mixture Model Prior description class
Description
An S4 class to represent a multivariate diagonal Gaussian mixture model. The model corresponds to the following generative model:
\pi \sim Dirichlet(\alpha)
Z_i \sim \mathcal{M}(1,\pi)
\lambda_k^{(d)} \sim \mathcal{G}(\kappa,\beta)
\mu_k^{(d)} \sim \mathcal{N}(\mu,(\tau \lambda_k)^{-1})
X_{i.}|Z_{ik}=1 \sim \mathcal{N}(\mu_k,\lambda_{k}^{-1})
with \mathcal{G}(\kappa,\beta) the Gamma distribution with shape parameter \kappa and rate parameter \beta.
These classes mainly store the prior parameters value (\alpha,\tau,\kappa\beta,\mu) of this generative model.
The DiagGmm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DiagGmmPrior-class must be sued when fitting a CombinedModels-class.
Usage
DiagGmmPrior(tau = 0.01, kappa = 1, beta = NaN, mu = NaN)
DiagGmm(alpha = 1, tau = 0.01, kappa = 1, beta = NaN, mu = NaN)
Arguments
tau |
Prior parameter (inverse variance), (default 0.01) |
kappa |
Prior parameter (gamma shape), (default to 1) |
beta |
Prior parameter (gamma rate), (default to NaN, in this case beta will be estimated from data as 0.1 time the mean of X columns variances) |
mu |
Prior for the means (vector of size D), (default to NaN, in this case mu will be estimated from data as the mean of X) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
Value
a DiagGmmPrior-class object
a DiagGmm-class object
References
Bertoletti, Marco & Friel, Nial & Rastelli, Riccardo. (2014). Choosing the number of clusters in a finite mixture model using an exact Integrated Completed Likelihood criterion. METRON. 73. 10.1007/s40300-015-0064-5. #'
See Also
DiagGmmFit-class, DiagGmmPath-class
Other DlvmModels:
CombinedModels,
DcLbm,
DcSbm,
DlvmPrior-class,
Gmm,
Lca,
MoM,
MoR,
MultSbm,
Sbm,
greed()
Examples
DiagGmmPrior()
DiagGmmPrior(tau = 0.1)
DiagGmm()
DiagGmm(tau = 0.1)