| DcLbm {greed} | R Documentation |
Degree Corrected Latent Block Model for bipartite graph class
Description
An S4 class to represent a degree corrected stochastic block model for co_clustering of bipartite graph.
Such model can be used to cluster graph vertex, and model a bipartite graph adjacency matrix X with the following generative model :
\pi \sim Dirichlet(\alpha)
Z_i^r \sim \mathcal{M}(1,\pi^r)
Z_j^c \sim \mathcal{M}(1,\pi^c)
\theta_{kl} \sim Exponential(p)
\gamma_i^r\sim \mathcal{U}(S_k)
\gamma_i^c\sim \mathcal{U}(S_l)
X_{ij}|Z_{ik}^cZ_{jl}^r=1 \sim \mathcal{P}(\gamma_i^r\theta_{kl}\gamma_j^c)
The individuals parameters \gamma_i^r,\gamma_j^c allow to take into account the node degree heterogeneity.
These parameters have uniform priors over simplex S_k.
These classes mainly store the prior parameters value \alpha,p of this generative model.
The DcLbm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DcLbmPrior-class must be sued when fitting a CombinedModels-class.
Usage
DcLbmPrior(p = NaN)
DcLbm(alpha = 1, p = NaN)
Arguments
p |
Exponential prior parameter (default to Nan, in this case p will be estimated from data as the average intensities of X) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
Value
a DcLbmPrior-class
a DcLbm-class object
See Also
DcLbmFit-class, DcLbmPath-class
Other DlvmModels:
CombinedModels,
DcSbm,
DiagGmm,
DlvmPrior-class,
Gmm,
Lca,
MoM,
MoR,
MultSbm,
Sbm,
greed()
Examples
DcLbmPrior()
DcLbmPrior(p = 0.7)
DcLbm()
DcLbm(p = 0.7)