CalculateKStepRandomWalkKernel {graphkernels} | R Documentation |
k-step random walk kernel
Description
This function calculates a kernel matrix of the k
-step random
walk kernel K_{\times}^{k}
.
Usage
CalculateKStepRandomWalkKernel(G, par)
Arguments
G |
a list of |
par |
a vector of coefficients |
Value
a kernel matrix of the k-step random walk kernel K_{\times}^{k}
Author(s)
Mahito Sugiyama
References
Gartner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives, Learning Theory and Kernel Machines (LNCS 2777), 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.
Sugiyama, M., Borgwardt, K. M.: Halting in Random Walk Kernels, Advances in Neural Information Processing Systems (NIPS 2015), 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.
Examples
data(mutag)
K <- CalculateKStepRandomWalkKernel(mutag, rep(1, 2))
[Package graphkernels version 1.6.1 Index]