rmstable_tree {graphicalExtremes} | R Documentation |
Sampling of a multivariate max-stable distribution on a tree
Description
Simulates exact samples of a multivariate max-stable distribution that is an extremal graphical model on a tree as defined in Engelke and Hitz (2020).
Usage
rmstable_tree(n, model = c("HR", "logistic", "dirichlet")[1], tree, par)
Arguments
n |
Number of simulations. |
model |
The parametric model type; one of:
|
tree |
Graph object from |
par |
Respective parameter for the given
|
Details
The simulation follows a combination of the extremal function algorithm in Dombry et al. (2016) and the theory in Engelke and Hitz (2020) to sample from a single extremal function. For details on the parameters of the Huesler-Reiss, logistic and negative logistic distributions see Dombry et al. (2016), and for the Dirichlet distribution see Coles and Tawn (1991).
Value
Numeric n \times d
matrix of simulations of the
multivariate max-stable distribution.
References
Coles S, Tawn JA (1991).
“Modelling extreme multivariate events.”
J. R. Stat. Soc. Ser. B Stat. Methodol., 53, 377–392.
Dombry C, Engelke S, Oesting M (2016).
“Exact simulation of max-stable processes.”
Biometrika, 103, 303–317.
Engelke S, Hitz AS (2020).
“Graphical models for extremes (with discussion).”
J. R. Stat. Soc. Ser. B Stat. Methodol., 82, 871–932.
See Also
Other sampling functions:
rmpareto_tree()
,
rmpareto()
,
rmstable()
Examples
## A 4-dimensional HR tree model
my_tree <- igraph::graph_from_adjacency_matrix(rbind(
c(0, 1, 0, 0),
c(1, 0, 1, 1),
c(0, 1, 0, 0),
c(0, 1, 0, 0)
),
mode = "undirected"
)
n <- 10
Gamma_vec <- c(.5, 1.4, .8)
rmstable_tree(n, "HR", tree = my_tree, par = Gamma_vec)
## A 4-dimensional Dirichlet model with asymmetric edge distributions
alpha <- cbind(c(.2, 1, .5), c(1.5, .6, .8))
rmstable_tree(n, model = "dirichlet", tree = my_tree, par = alpha)