rmpareto {graphicalExtremes} | R Documentation |
Sampling of a multivariate Pareto distribution
Description
Simulates exact samples of a multivariate Pareto distribution.
Usage
rmpareto(
n,
model = c("HR", "logistic", "neglogistic", "dirichlet"),
d = NULL,
par
)
Arguments
n |
Number of simulations. |
model |
The parametric model type; one of:
|
d |
Dimension of the multivariate Pareto distribution.
In some cases this can be |
par |
Respective parameter for the given
|
Details
The simulation follows the algorithm in Engelke and Hitz (2020). For details on the parameters of the Huesler-Reiss, logistic and negative logistic distributions see Dombry et al. (2016), and for the Dirichlet distribution see Coles and Tawn (1991).
Value
Numeric n \times d
matrix of simulations of the
multivariate Pareto distribution.
References
Coles S, Tawn JA (1991).
“Modelling extreme multivariate events.”
J. R. Stat. Soc. Ser. B Stat. Methodol., 53, 377–392.
Dombry C, Engelke S, Oesting M (2016).
“Exact simulation of max-stable processes.”
Biometrika, 103, 303–317.
Engelke S, Hitz AS (2020).
“Graphical models for extremes (with discussion).”
J. R. Stat. Soc. Ser. B Stat. Methodol., 82, 871–932.
See Also
Other sampling functions:
rmpareto_tree()
,
rmstable_tree()
,
rmstable()
Examples
## A 4-dimensional HR distribution
n <- 10
d <- 4
G <- cbind(
c(0, 1.5, 1.5, 2),
c(1.5, 0, 2, 1.5),
c(1.5, 2, 0, 1.5),
c(2, 1.5, 1.5, 0)
)
rmpareto(n, "HR", d = d, par = G)
## A 3-dimensional logistic distribution
n <- 10
d <- 3
theta <- .6
rmpareto(n, "logistic", d, par = theta)
## A 5-dimensional negative logistic distribution
n <- 10
d <- 5
theta <- 1.5
rmpareto(n, "neglogistic", d, par = theta)
## A 4-dimensional Dirichlet distribution
n <- 10
d <- 4
alpha <- c(.8, 1, .5, 2)
rmpareto(n, "dirichlet", d, par = alpha)