fmpareto_graph_HR {graphicalExtremes} | R Documentation |
Parameter fitting for Huesler-Reiss graphical models
Description
Fits the parameter matrix (variogram) of a multivariate Huesler-Reiss Pareto distribution with a given graphical structure, using maximum-likelihood estimation or the empirical variogram.
Usage
fmpareto_graph_HR(
data,
graph,
p = NULL,
method = c("vario", "ML"),
handleCliques = c("average", "full", "sequential"),
...
)
Arguments
data |
Numeric |
graph |
Undirected, connected [ |
p |
Numeric between 0 and 1 or |
method |
One of |
handleCliques |
How to handle cliques and separators in the graph. See details. |
... |
Arguments passed to |
Details
If handleCliques='average'
, the marginal parameter matrix is estimated for
each maximal clique of the graph
and then combined into a partial parameter
matrix by taking the average of entries from overlapping cliques. Lastly,
the full parameter matrix is computed using complete_Gamma()
.
If handleCliques='full'
, first the full parameter matrix is estimated using the
specified method
and then the non-edge entries are adjusted such that the
final parameter matrix has the graphical structure indicated by graph
.
If handleCliques='sequential'
, graph
must be decomposable, and
method='ML'
must be specified. The parameter matrix is first estimated on
the (recursive) separators and then on the rest of the cliques, keeping
previously estimated entries fixed.
If method='ML'
, the computational cost is mostly influenced by the total size
of the graph (if handleCliques='full'
) or the size of the cliques,
and can already take a significant amount of time for modest dimensions (e.g. d=3
).
Value
The estimated parameter matrix.
See Also
Other parameter estimation methods:
data2mpareto()
,
emp_chi_multdim()
,
emp_chi()
,
emp_vario()
,
emtp2()
,
fmpareto_HR_MLE()
,
loglik_HR()