emst {graphicalExtremes} | R Documentation |
Fitting extremal minimum spanning tree
Description
Fits an extremal minimum spanning tree, where the edge weights are:
negative maximized log-likelihoods of the bivariate Huesler-Reiss distributions, if
method = "ML"
. See Engelke and Hitz (2020) for details.empirical extremal variogram, if
method = "vario"
. See Engelke and Volgushev (2022) for details.empirical extremal correlation, if
method = "chi"
. See Engelke and Volgushev (2022) for details.
Usage
emst(data, p = NULL, method = c("vario", "ML", "chi"), cens = FALSE)
Arguments
data |
Numeric |
p |
Numeric between 0 and 1 or |
method |
One of |
cens |
Logical. This argument is considered only if |
Value
List consisting of:
graph |
An |
Gamma |
Numeric |
References
Engelke S, Hitz AS (2020).
“Graphical models for extremes (with discussion).”
J. R. Stat. Soc. Ser. B Stat. Methodol., 82, 871–932.
Engelke S, Volgushev S (2022).
“Structure learning for extremal tree models.”
J. R. Stat. Soc. Ser. B Stat. Methodol..
doi:10.1111/rssb.12556, Forthcoming, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12556.
See Also
Other structure estimation methods:
data2mpareto()
,
eglatent()
,
eglearn()
,
fit_graph_to_Theta()
Examples
## Fitting a 4-dimensional HR minimum spanning tree
my_graph <- igraph::graph_from_adjacency_matrix(
rbind(
c(0, 1, 0, 0),
c(1, 0, 1, 1),
c(0, 1, 0, 0),
c(0, 1, 0, 0)
),
mode = "undirected"
)
n <- 100
Gamma_vec <- c(.5, 1.4, .8)
complete_Gamma(Gamma = Gamma_vec, graph = my_graph) ## full Gamma matrix
set.seed(123)
my_data <- rmpareto_tree(n, "HR", tree = my_graph, par = Gamma_vec)
my_fit <- emst(my_data, p = NULL, method = "ML", cens = FALSE)