emp_chi {graphicalExtremes} | R Documentation |
Empirical estimation of extremal correlation matrix \chi
Description
Estimates empirically the matrix of bivariate extremal correlation coefficients \chi
.
Usage
emp_chi(data, p = NULL)
emp_chi_pairwise(data, p = NULL, verbose = FALSE)
Arguments
data |
Numeric |
p |
Numeric scalar between 0 and 1 or |
verbose |
Print verbose progress information |
Details
emp_chi_pairwise
calls emp_chi
for each pair of observations.
This is more robust if the data contains many NA
s, but can take rather long.
Value
Numeric matrix d \times d
. The matrix contains the
bivariate extremal coefficients \chi_{ij}
, for i, j = 1, ..., d
.
See Also
Other parameter estimation methods:
data2mpareto()
,
emp_chi_multdim()
,
emp_vario()
,
emtp2()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()
Examples
n <- 100
d <- 4
p <- .8
Gamma <- cbind(
c(0, 1.5, 1.5, 2),
c(1.5, 0, 2, 1.5),
c(1.5, 2, 0, 1.5),
c(2, 1.5, 1.5, 0)
)
set.seed(123)
my_data <- rmstable(n, "HR", d = d, par = Gamma)
emp_chi(my_data, p)