eglearn {graphicalExtremes} | R Documentation |
Learning extremal graph structure
Description
Following the methodology from Engelke et al. (2022), fits an extremal graph structure using the neighborhood selection approach (see Meinshausen and Bühlmann (2006)) or graphical lasso (see Friedman et al. (2008)).
Usage
eglearn(
data,
p = NULL,
rholist = c(0.1, 0.15, 0.19, 0.205),
reg_method = c("ns", "glasso"),
complete_Gamma = FALSE
)
Arguments
data |
Numeric |
p |
Numeric between 0 and 1 or |
rholist |
Numeric vector of non-negative regularization parameters
for the lasso.
Default is |
reg_method |
One of |
complete_Gamma |
Whether you want to try fto complete Gamma matrix.
Default is |
Value
List made of:
graph |
A list of |
Gamma |
A list of numeric estimated |
rholist |
The list of penalty coefficients. |
graph_ic |
A list of |
Gamma_ic |
A list of numeric |
References
Engelke S, Lalancette M, Volgushev S (2022).
“Learning extremal graphical structures in high dimensions.”
doi:10.48550/ARXIV.2111.00840, Available from https://arxiv.org/abs/2111.00840., 2111.00840, https://arxiv.org/abs/2111.00840.
Friedman J, Hastie T, Tibshirani R (2008).
“Sparse inverse covariance estimation with the graphical lasso.”
Biostatistics, 9(3), 432–441.
Meinshausen N, Bühlmann P (2006).
“High-dimensional graphs and variable selection with the Lasso.”
Ann. Statist., 34(3), 1436 – 1462.
doi:10.1214/009053606000000281.
See Also
Other structure estimation methods:
data2mpareto()
,
eglatent()
,
emst()
,
fit_graph_to_Theta()
Examples
set.seed(2)
m <- generate_random_model(d=6)
y <- rmpareto(n=500, par=m$Gamma)
ret <- eglearn(y)