eglatent {graphicalExtremes} | R Documentation |
Learning extremal graph structure with latent variables
Description
Following the methodology from Engelke and Taeb (2024), fits an extremal graph structure with latent variables.
Usage
eglatent(
Gamma,
lam1_list = c(0.1, 0.15, 0.19, 0.205),
lam2_list = c(2),
refit = TRUE,
verbose = FALSE
)
Arguments
Gamma |
conditionally negative semidefinite matrix. This will be typically the empirical variogram matrix. |
lam1_list |
Numeric vector of non-negative regularization parameters for eglatent.
Default is |
lam2_list |
Numeric vector of non-negative regularization parameters for eglatent.
Default is |
refit |
Logical scalar, if TRUE then the model is refit on the estimated graph to obtain an estimate of the Gamma matrix on that graph.
Default is |
verbose |
Logical scalar, indicating whether to print progress updates. |
Value
The function fits one model for each combination
of values in lam1_list
and lam2_list
. All returned objects
have one entry per model. List consisting of:
#'
graph |
A list of |
rk |
Numeric vector containing the estimated ranks of the latent variables. |
G_est |
A list of numeric estimated |
G_refit |
A list of numeric estimated |
lambdas |
A list containing the values of |
References
Engelke S, Taeb A (2024). “Extremal graphical modeling with latent variables.” 2403.09604.
See Also
Other structure estimation methods:
data2mpareto()
,
eglearn()
,
emst()
,
fit_graph_to_Theta()