data2mpareto {graphicalExtremes} | R Documentation |
Data standardization to multivariate Pareto scale
Description
Transforms the data
matrix empirically to the multivariate Pareto scale.
Usage
data2mpareto(data, p, na.rm = FALSE)
Arguments
data |
Numeric |
p |
Numeric between 0 and 1. Probability used for the quantile to threshold the data. |
na.rm |
Logical. If rows containing NAs should be removed. |
Details
The columns of the data
matrix are first transformed empirically to
standard Pareto distributions. Then, only the observations where at least
one component exceeds the p
-quantile of the standard Pareto distribution
are kept. Those observations are finally divided by the p
-quantile
of the standard Pareto distribution to standardize them to the multivariate Pareto scale.
If na.rm
is FALSE
, missing entries are left as such during the transformation of univariate marginals.
In the thresholding step, missing values are considered as -Inf
.
Value
Numeric m \times d
matrix, where m
is the number
of rows in the original data
matrix that are above the threshold.
See Also
Other parameter estimation methods:
emp_chi_multdim()
,
emp_chi()
,
emp_vario()
,
emtp2()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()
Other structure estimation methods:
eglatent()
,
eglearn()
,
emst()
,
fit_graph_to_Theta()
Examples
n <- 20
d <- 4
p <- .8
G <- cbind(
c(0, 1.5, 1.5, 2),
c(1.5, 0, 2, 1.5),
c(1.5, 2, 0, 1.5),
c(2, 1.5, 1.5, 0)
)
set.seed(123)
my_data <- rmstable(n, "HR", d = d, par = G)
data2mpareto(my_data, p)