rf_summary {graphPAF} | R Documentation |
Create a rf.data.frame object
Description
Create a rf.data.frame object for risk factors, prevalence and risk ratios. This will be used in fan plots and nomograms (by simply sending the rf.dat.frame object to plot)
Usage
rf_summary(rf_names, rf_prev, risk, log = FALSE)
Arguments
rf_names |
A character vector of risk factor names |
rf_prev |
A numeric vector specifying prevalence of risk factor in disease controls (estimates of population prevalence can also be used if the disease is rare) |
risk |
A numeric vector of relative risks or Odds ratios for disease corresponding to each risk factor (if log=FALSE). Log-relative risks or log-odds ratios can be alternatively specified (if log=TRUE) |
log |
default TRUE. Set to TRUE if relative risks/odds ratios are specified on log-scale |
Value
A rf.data.frame object
References
Ferguson, J., O’Leary, N., Maturo, F., Yusuf, S. and O’Donnell, M., 2019. Graphical comparisons of relative disease burden across multiple risk factors. BMC medical research methodology, 19(1), pp.1-9.
Examples
library(ggplot2)
rfs <- rf_summary(rf_names=c('Hypertension','Inactivity','ApoB/ApoA','Diet',
'WHR','Smoking','Cardiac causes','Alcohol','Global Stress','Diabetes'),
rf_prev=c(.474,.837,.669,.67,.67,.224,.049,.277,.144,.129),
risk=c(1.093,0.501,0.428,0.378,0.294,0.513,1.156,0.186,0.301,0.148),log=TRUE)
# fanplot
plot(rfs,fan.point.size=4,fan.label.size=4,
fan.legend.text.size=10,fan.legend.title.size=10,
fan.axis.text.size=10,fan.axis.title.size=10)
# nomogram
plot(rfs,nomogram.label.size=6,
nomogram.axis.text.size=6, type="n")
# reverse nomogram
plot(rfs,nomogram.label.size=6,
nomogram.axis.text.size=6, type="rn")