kbackfit {gplm} | R Documentation |
Backfitting for an additive model using kernel regression
Description
Implements kernel-based backfitting in an additive model, optional with a partial linear term.
Usage
kbackfit(t, y, h, x = NULL, grid = NULL, weights.conv = 1,
offset = 0, method = "generic",
max.iter = 50, eps.conv = 1e-04, m.start = NULL,
kernel = "biweight")
Arguments
y |
n x 1 vector, responses |
t |
n x q matrix, data for nonparametric part |
h |
scalar or 1 x q, bandwidth(s) |
x |
optional, n x p matrix, data for linear part |
grid |
m x q matrix, where to calculate the nonparametric function (default = t) |
weights.conv |
weights for convergence criterion |
offset |
offset |
method |
one of |
max.iter |
maximal number of iterations |
eps.conv |
convergence criterion |
m.start |
n x q matrix, start values for m |
kernel |
text string, see |
Value
List with components:
c |
constant |
b |
p x 1 vector, linear coefficients |
m |
n x q matrix, nonparametric marginal function estimates |
m.grid |
m x q matrix, nonparametric marginal function estimates on grid |
rss |
residual sum of squares |
Author(s)
Marlene Mueller
See Also
[Package gplm version 0.7-4 Index]