priors {gplite} | R Documentation |
Initialize prior for hyperparameter
Description
Functions for initializing hyperparameter priors which can then be passed
to gp_init
. See section Details for the prior explanations.
Usage
prior_fixed()
prior_logunif()
prior_lognormal(loc = 0, scale = 1)
prior_half_t(df = 1, scale = 1)
Arguments
loc |
Location parameter of the distribution |
scale |
Scale parameter of the distribution |
df |
Degrees of freedom |
Details
The supported priors are:
prior_fixed
The hyperparameter is fixed to its initial value, and is not optimized by
gp_optim
.prior_logunif
Improper uniform prior on the log of the parameter.
prior_lognormal
Log-normal prior (Gaussian prior on the logarithm of the parameter).
prior_half_t
Half Student-t prior for a positive parameter.
Value
The hyperprior object.
References
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press.
Examples
# Quasi-periodic covariance function, with fixed period
cf1 <- cf_periodic(
period = 5,
prior_period = prior_fixed(),
cf_base = cf_sexp(lscale = 2)
)
cf2 <- cf_sexp(lscale = 40)
cf <- cf1 * cf2
gp <- gp_init(cf)
# draw from the prior
set.seed(104930)
xt <- seq(-10, 10, len = 500)
plot(xt, gp_draw(gp, xt), type = "l")
[Package gplite version 0.13.0 Index]