gp.mle {gp} | R Documentation |
Maximum likelihood estimation of the generalized Poisson distribution
Description
Maximum likelihood estimation of the generalized Poisson distribution.
Usage
gp.mle(y)
Arguments
y |
A vector with non negative integer values. |
Details
The probability density function of the generalized Poisson distribution is the following (Nikoloulopoulos & Karlis, 2008):
P(Y=y|\theta, \lambda)=\theta(\theta+\lambda y)^{y-1}\frac{e^{-\theta-\lambda y}}{y!},
\ \ y=0,1... \ \ \theta >0, \ \ 0 \leq \lambda \leq 1.
To ensure that \theta
is positive we use the "log" link and for \lambda
to lie within 0 and 1
we use the "logit" link within the optim
function.
Value
A vector with three numbers, the \theta
and \lambda
parameters and the value of the log-likelihood.
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Nikoloulopoulos A.K. & Karlis D. (2008). On modeling count data: a comparison of some well-known discrete distributions. Journal of Statistical Computation and Simulation, 78(3): 437–457.
See Also
Examples
y <- rgp(1000, 10, 0.5, method = "Inversion")
gp.mle(y)