| regret {gosset} | R Documentation | 
Regret-based values for risk assessment
Description
Regret is an important heuristic in the behavioural sciences. Minimizing worst regret (the loss under the worst possible outcome) is a criterion that takes a conservative approach to risk analysis in diversification strategies.
Usage
regret(object, ..., bootstrap = TRUE, normalize = TRUE)
## Default S3 method:
regret(object, ..., values, items, group, bootstrap = TRUE, normalize = TRUE)
## S3 method for class 'pltree'
regret(object, bootstrap = TRUE, normalize = TRUE, ...)
## S3 method for class 'list'
regret(object, bootstrap = TRUE, normalize = TRUE, ...)
Arguments
object | 
 a data.frame, an object of class   | 
... | 
 further arguments passed to methods  | 
bootstrap | 
 logical, to run a Bayesian bootstrap on object  | 
normalize | 
 logical, to normalize values to sum to 1  | 
values | 
 an index in object with the values to compute regret  | 
items | 
 an index in object for the different items  | 
group | 
 an index in object for the different scenarios  | 
Details
Additional details for Bayesian bootstrap: 
statistic A function that accepts data as its first argument and possibly, 
the weights as its second, if use_weights is TRUE; n1 The size of 
the bootstrap sample; n2 The sample size used to calculate 
the statistic each bootstrap draw
Value
A data frame with regret estimates
items | 
 the item names  | 
worth | 
 the worth parameters  | 
regret | 
 the squared regret  | 
worst_regret | 
 the worst regret  | 
Author(s)
Jacob van Etten and Kauê de Sousa
References
Loomes G. & Sugden R. (1982). The Economic Journal, 92(368), 805. doi:10.2307/2232669
Bleichrodt H. & Wakker P. P. (2015). The Economic Journal, 125(583), 493–532. doi:10.1111/ecoj.12200
Examples
# Case 1 ####
library("PlackettLuce")
data("breadwheat", package = "gosset")
# convert the tricot rankings from breadwheat data
# into a object of class 'grouped_rankings'
G = rank_tricot(breadwheat,
                 items = c("variety_a","variety_b","variety_c"),
                 input = c("overall_best","overall_worst"),
                 group = TRUE)
# combine grouped rankings with temperature indices
mydata = cbind(G, breadwheat[c("lon","lat")])
# fit a pltree model using geographic data
mod = pltree(G ~ ., data = mydata)
regret(mod)
# Case 2 ####
# list of PlackettLuce models
R = matrix(c(1, 2, 3, 0,
              4, 1, 2, 3,
              2, 1, 3, 4,
              1, 2, 3, 0,
              2, 1, 3, 0,
              1, 0, 3, 2), nrow = 6, byrow = TRUE)
colnames(R) = c("apple", "banana", "orange", "pear")
mod1 = PlackettLuce(R)
R2 = matrix(c(1, 2, 0, 3,
               2, 1, 0, 3,
               2, 1, 0, 3,
               1, 2, 0, 3,
               2, 1, 0, 3,
               1, 3, 4, 2), nrow = 6, byrow = TRUE)
colnames(R2) = c("apple", "banana", "orange", "pear")
mod2 = PlackettLuce(R2)
mod = list(mod1, mod2)
regret(mod, n1 = 500)