elem-flmfr {goffda} | R Documentation |
Covariate, error, and kernel of a functional linear model with functional response
Description
Simulation of X
, a random variable in the Hilbert space
of square-integrable functions in [a, b]
, L^2([a, b])
, and
\varepsilon
, a random variable in L^2([c, d])
.
Together with the bivariate kernel \beta
, they are the necessary
elements for sampling a Functional Linear Model with Functional Response
(FLMFR):
Y(t) = \int_a^b X(s) \beta(s,t) ds + \varepsilon(t).
The next functions sample X
and \varepsilon
, and
construct \beta
, using different proposals in the literature:
r_cm2013_flmfr
is based on the numerical example given in Section 3 of Crambes and Mas (2013). Termed as S1 in Section 2 of García-Portugués et al. (2021).r_ik2018_flmfr
is based on the numerical example given in Section 4 of Imaizumi and Kato (2018), but zeroing the first Functional Principal Components (FPC) coefficients of\beta
(so the first FPC are not adequate for estimation). S3 in Section 2 of García-Portugués et al. (2021).r_gof2021_flmfr
gives a numerical example in Section 2 of García-Portugués et al. (2021), denoted therein as S2.
Usage
r_cm2013_flmfr(n, s = seq(0, 1, len = 101), t = seq(0, 1, len = 101),
std_error = 0.15, n_fpc = 50, concurrent = FALSE)
r_ik2018_flmfr(n, s = seq(0, 1, l = 101), t = seq(0, 1, l = 101),
std_error = 1.5, parameters = c(1.75, 0.8, 2.4, 0.25), n_fpc = 50,
concurrent = FALSE)
r_gof2021_flmfr(n, s = seq(0, 1, len = 101), t = seq(0, 1, len = 101),
std_error = 0.35, concurrent = FALSE)
Arguments
n |
number of trajectories to sample. |
s , t |
grid points where functional covariates and responses are valued, respectively. |
std_error |
standard deviation of the random variables
involved in the generation of the functional error |
n_fpc |
number of FPC to be taken into account for the data generation.
Must be greater than |
concurrent |
flag to consider a concurrent FLMFR (degenerate case).
Defaults to |
parameters |
vector of parameters, only required for
|
Details
Descriptions of the processes X
and \varepsilon
,
and of \beta
can be seen in the references.
Value
A list with the following elements:
X_fdata |
functional covariates, an
|
error_fdata |
functional errors, an
|
beta |
either the matrix with |
Author(s)
Javier Álvarez-Liébana.
References
Cardot, H. and Mas, A. (2013). Asymptotics of prediction in functional linear regression with functional outputs. Bernoulli, 19(5B):2627–2651. doi:10.3150/12-BEJ469
Imaizumi, M. and Kato, K. (2018). PCA-based estimation for functional linear regression with functional responses. Journal of Multivariate Analysis, 163:15–36. doi:10.1016/j.jmva.2017.10.001
García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G. and Gonzalez-Manteiga, W. (2021). A goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal of Statistics, 48(2):502–528. doi:10.1111/sjos.12486
Examples
# FLMFR based on Imaizumi and Kato (2018) adopting different Hilbert spaces
s <- seq(0, 1, l = 201)
t <- seq(2, 4, l = 301)
r_ik2018 <- r_ik2018_flmfr(n = 50, s = s, t = t, std_error = 1.5,
parameters = c(1.75, 0.8, 2.4, 0.25), n_fpc = 50)
plot(r_ik2018$X_fdata)
plot(r_ik2018$error_fdata)
image(x = s, y = t, z = r_ik2018$beta, col = viridisLite::viridis(20))
# FLMFR based on Cardot and Mas (2013) adopting different Hilbert spaces
r_cm2013 <- r_cm2013_flmfr(n = 50, s = s, t = t, std_error = 0.15,
n_fpc = 50)
plot(r_cm2013$X_fdata)
plot(r_cm2013$error_fdata)
image(x = s, y = t, z = r_cm2013$beta, col = viridisLite::viridis(20))
# FLMFR in García-Portugués et al. (2021) adopting different Hilbert spaces
r_gof2021 <- r_gof2021_flmfr(n = 50, s = s, t = t, std_error = 0.35,
concurrent = FALSE)
plot(r_gof2021$X_fdata)
plot(r_gof2021$error_fdata)
image(x = s, y = t, z = r_gof2021$beta, col = viridisLite::viridis(20))
# Concurrent model in García-Portugués et al. (2021)
r_gof2021 <- r_gof2021_flmfr(n = 50, s = s, t = s, std_error = 0.35,
concurrent = TRUE)
plot(r_gof2021$X_fdata)
plot(r_gof2021$error_fdata)
plot(r_gof2021$beta)