gofCustomTest {gofCopula} | R Documentation |
Function to derive own tests
Description
gofCustomTest
allows to include own Goodness-of-Fit tests and
perform the test with the package. The margins can be estimated by a bunch
of distributions and the time which is necessary for the estimation can be
given. The approximate p-values are computed with a parametric bootstrap,
which computation can be accelerated by enabling in-build parallel
computation. It is possible to insert datasets of all dimensions above 1 and
the possible copulae are "normal"
, "t"
, "clayton"
,
"gumbel"
, "frank"
, "joe"
, "amh"
,
"galambos"
, "huslerReiss"
, "tawn"
, "tev"
,
"fgm"
and "plackett"
. The parameter estimation is performed
with pseudo maximum likelihood method. In case the estimation fails,
inversion of Kendall's tau is used.
Usage
gofCustomTest(
copula = c("normal", "t", "clayton", "gumbel", "frank", "joe", "amh", "galambos",
"huslerReiss", "tawn", "tev", "fgm", "plackett"),
x,
customTest = NULL,
param = 0.5,
param.est = TRUE,
df = 4,
df.est = TRUE,
margins = "ranks",
flip = 0,
M = 1000,
dispstr = "ex",
lower = NULL,
upper = NULL,
seed.active = NULL,
processes = 1
)
Arguments
copula |
The copula to test for. Possible are |
x |
A matrix containing the data with rows being observations and columns being variables. |
customTest |
A character string with the name of the customized test. The test has to be loaded into the workspace. Currently the function containing the test has to have 2 arguments, the first one for the dataset and the second one for the copula to test for. The arguments have to be named "x" and "copula" respectively. |
param |
The copula parameter to use, if it shall not be estimated. |
param.est |
Shall be either |
df |
Degrees of freedom, if not meant to be estimated. Only necessary
if tested for |
df.est |
Indicates if |
margins |
Specifies which estimation method for the margins shall be
used. The default is |
flip |
The control parameter to flip the copula by 90, 180, 270 degrees clockwise. Only applicable for bivariate copula. Default is 0 and possible inputs are 0, 90, 180, 270 and NULL. |
M |
Number of bootstrapping loops. |
dispstr |
A character string specifying the type of the symmetric
positive definite matrix characterizing the elliptical copula. Implemented
structures are "ex" for exchangeable and "un" for unstructured, see package
|
lower |
Lower bound for the maximum likelihood estimation of the copula
parameter. The constraint is also active in the bootstrapping procedure. The
constraint is not active when a switch to inversion of Kendall's tau is
necessary. Default |
upper |
Upper bound for the maximum likelihood estimation of the copula
parameter. The constraint is also active in the bootstrapping procedure. The
constraint is not active when a switch to inversion of Kendall's tau is
necessary. Default |
seed.active |
Has to be either an integer or a vector of M+1 integers.
If an integer, then the seeds for the bootstrapping procedure will be
simulated. If M+1 seeds are provided, then these seeds are used in the
bootstrapping procedure. Defaults to |
processes |
The number of parallel processes which are performed to speed up the bootstrapping. Shouldn't be higher than the number of logical processors. Please see the details. |
Details
The approximate p-value is computed by the formula, see copula,
\sum_{b=1}^M \mathbf{I}(|T_b| \geq |T|) / M,
where T
and T_b
denote the test statistic and the
bootstrapped test statistc, respectively.
For small values of M
, initializing the parallelisation via
processes
does not make sense. The registration of the parallel
processes increases the computation time. Please consider to enable
parallelisation just for high values of M
.
Value
An object of the class
gofCOP with the components
method |
a character which informs about the performed analysis |
copula |
the copula tested for |
margins |
the method used to estimate the margin distribution. |
param.margins |
the parameters of
the estimated margin distributions. Only applicable if the margins were not
specified as |
theta |
dependence parameters of the copulae |
df |
the degrees of freedem of the copula. Only applicable for t-copula. |
res.tests |
a matrix with the p-values and test statistics of the hybrid and the individual tests |
Examples
# For illustration we load here the test statistic of the gofSn test
Testfunc = function(x, copula) {
C.theo = pCopula(x, copula = copula)
C.n = F.n(x, X = x)
CnK = sum((C.n - C.theo)^2)
return(CnK)
}
data(IndexReturns2D)
gofCustomTest(copula = "normal", x = IndexReturns2D,
customTest = "Testfunc", M=10)