GNN_basics {gnn} | R Documentation |
Basic Functions and Methods
Description
Basic functions and methods for objects of S3
class "gnn_GNN"
.
Usage
## S3 method for class 'gnn_GNN'
print(x, ...)
## S3 method for class 'gnn_GNN'
str(object, ...)
## S3 method for class 'gnn_GNN'
summary(object, ...)
## S3 method for class 'gnn_GNN'
dim(x)
## S3 method for class 'gnn_GNN'
is.GNN(x)
## S3 method for class 'list'
is.GNN(x)
Arguments
x |
|
object |
object of |
... |
currently not used. |
Value
- print()
return value of the
print()
method for objects of class"list"
.- str()
nothing, as
str()
returns nothing when applied to objects of class"list"
.- summary()
return value of the
summary()
method for objects of class"list"
.- dim()
slot
dim
ofx
, so a vector of dimensions of input, hidden and output layers.- is.GNN()
logical
of length equal to the length ofx
indicating, for each component, whether it is an object of class"gnn_GNN"
.
Author(s)
Marius Hofert
Examples
if(TensorFlow_available()) { # rather restrictive (due to R-Forge, winbuilder)
library(gnn) # for being standalone
d <- 2
dim <- c(d, 300, d) # dimensions of the input, hidden and output layers
GMMN <- FNN(dim) # define the GMMN model
stopifnot(is.GNN(GMMN)) # check for being a GNN
GMMN # print() method
str(GMMN) # str() method
summary(GMMN) # summary() method
stopifnot(dim(GMMN) == c(d, 300, d)) # dim() method
}
[Package gnn version 0.0-4 Index]