nonlin.function {gnm} | R Documentation |
Functions to Specify Nonlinear Terms in gnm Models
Description
Nonlinear terms maybe be specified in the formula argument to gnm by
a call to a function of class "nonlin"
. A "nonlin"
function takes a list of arguments and returns a list of arguments for
the internal nonlinTerms
function.
Arguments
... |
arguments required to define the term, e.g. symbolic representations of predictors in the term. |
inst |
(optional) an integer specifying the instance number of
the term - for compatibility with |
Value
The function should return a list with the following components:
predictors |
a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear) predictors that form part of the term. Intercepts will be added by default to predictors specified by formulae. If predictors are named, these names will be used as a prefix for parameter labels or the parameter label itself in the single parameter case (in either case, prefixed by the call if supplied.) Predictors that may include an intercept should always be named or matched to a call. |
variables |
an optional list of expressions representing variables in the term. |
term |
a function which takes the arguments |
common |
an optional numeric index of |
call |
an optional call to be used as a prefix for parameter labels, specified as an R expression. |
match |
(if |
start |
an optional function which takes a named vector of parameters corresponding to the predictors and returns a vector of starting values for those parameters. This function is ignored if the term is nested within another nonlinear term. |
Author(s)
Heather Turner
See Also
Const
to specify a constant,
Dref
to specify a diagonal reference term,
Exp
to specify the exponential of a predictor,
Inv
to specify the reciprocal of a predictor,
Mult
to specify a multiplicative interaction,
MultHomog
to specify a homogeneous multiplicative
interaction,
Examples
### Equivalent of weighted.MM function in ?nls
weighted.MM <- function(resp, conc){
list(predictors = list(Vm = substitute(conc), K = 1),
variables = list(substitute(resp), substitute(conc)),
term = function(predictors, variables) {
pred <- paste("(", predictors[1], "/(", predictors[2],
" + ", variables[2], "))", sep = "")
pred <- paste("(", variables[1], " - ", pred, ")/sqrt(",
pred, ")", sep = "")
})
}
class(weighted.MM) <- "nonlin"
## use to fitted weighted Michaelis-Menten model
Treated <- Puromycin[Puromycin$state == "treated", ]
Pur.wt.2 <- gnm( ~ -1 + weighted.MM(rate, conc), data = Treated,
start = c(Vm = 200, K = 0.1), verbose = FALSE)
Pur.wt.2
##
## Call:
## gnm(formula = ~-1 + weighted.MM(rate, conc), data = Treated,
## start = c(Vm = 200, K = 0.1), verbose = FALSE)
##
## Coefficients:
## Vm K
## 206.83477 0.05461
##
## Deviance: 14.59690
## Pearson chi-squared: 14.59690
## Residual df: 10
### The definition of MultHomog
MultHomog <- function(..., inst = NULL){
dots <- match.call(expand.dots = FALSE)[["..."]]
list(predictors = dots,
common = rep(1, length(dots)),
term = function(predictors, ...) {
paste("(", paste(predictors, collapse = ")*("), ")", sep = "")
},
call = as.expression(match.call()))
}
class(MultHomog) <- "nonlin"
## use to fit homogeneous multiplicative interaction
set.seed(1)
RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
MultHomog(origin, destination), ofInterest = "MultHomog",
family = poisson, data = occupationalStatus,
verbose = FALSE)
RChomog
##
## Call:
##
## gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
## MultHomog(origin, destination), ofInterest = "MultHomog", family = poisson,
## data = occupationalStatus, verbose = FALSE)
##
## Coefficients of interest:
## MultHomog(origin, destination)1
## -1.50089
## MultHomog(origin, destination)2
## -1.28260
## MultHomog(origin, destination)3
## -0.68443
## MultHomog(origin, destination)4
## -0.10055
## MultHomog(origin, destination)5
## -0.08338
## MultHomog(origin, destination)6
## 0.42838
## MultHomog(origin, destination)7
## 0.84452
## MultHomog(., .).`origin|destination`8
## 1.08809
##
## Deviance: 32.56098
## Pearson chi-squared: 31.20716
## Residual df: 34
##
## the definition of Exp
Exp <- function(expression, inst = NULL){
list(predictors = list(substitute(expression)),
term = function(predictors, ...) {
paste("exp(", predictors, ")", sep = "")
},
call = as.expression(match.call()),
match = 1)
}
class(Exp) <- "nonlin"
## use to fit exponentional model
x <- 1:100
y <- exp(- x / 10)
set.seed(4)
exp1 <- gnm(y ~ Exp(1 + x), verbose = FALSE)
exp1
##
## Call:
## gnm(formula = y ~ Exp(1 + x), verbose = FALSE)
##
## Coefficients:
## (Intercept) Exp(. + x).(Intercept)
## 1.549e-11 -7.934e-11
## Exp(1 + .).x
## -1.000e-01
##
## Deviance: 9.342418e-20
## Pearson chi-squared: 9.342418e-20
## Residual df: 97