diagnostic_plot {gmvarkit} | R Documentation |
Quantile residual diagnostic plot for a GMVAR, StMVAR, or G-StMVAR model
Description
diagnostic_plot
plots a multivariate quantile residual diagnostic plot
for either autocorrelation, conditional heteroskedasticity, or normality, or simply draws
the quantile residual time series.
Usage
diagnostic_plot(
gsmvar,
type = c("all", "series", "ac", "ch", "norm"),
maxlag = 12,
wait_time = 4
)
Arguments
gsmvar |
an object of class |
type |
which type of diagnostic plot should be plotted?
|
maxlag |
the maximum lag considered in types |
wait_time |
if |
Details
Auto- and cross-correlations (types "ac"
and "ch"
) are calculated with the function
acf
from the package stats
and the plot method for class 'acf'
objects is employed.
References
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Kalliovirta L. and Saikkonen P. 2010. Reliable Residuals for Multivariate Nonlinear Time Series Models. Unpublished Revision of HECER Discussion Paper No. 247.
Virolainen S. (forthcoming). A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
See Also
profile_logliks
, fitGSMVAR
, GSMVAR
, quantile_residual_tests
,
LR_test
, Wald_test
, Rao_test
, cond_moment_plot
, acf
,
density
, predict.gsmvar
Examples
# GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319,
0.005, 0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185,
-0.012, 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
diagnostic_plot(mod12, type="series")
diagnostic_plot(mod12, type="ac")
# GMVAR(2,2), d=2 model:
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406,
-0.005, 0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218,
0.02, -0.119, 0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004,
0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22)
diagnostic_plot(mod22, type="ch")
diagnostic_plot(mod22, type="norm")
# G-StMVAR(2, 1, 1), d=2 model:
params22gs <- c(0.697, 0.154, 0.049, 0.374, 0.476, 0.318, -0.645, -0.302,
-0.222, 0.193, 0.042, -0.013, 0.048, 0.554, 0.033, 0.184, 0.005, -0.186,
0.683, 0.256, 0.031, 0.026, 0.204, 0.583, -0.002, 0.048, 0.182, 4.334)
mod22gs <- GSMVAR(gdpdef, p=2, M=c(1, 1), params=params22gs, model="G-StMVAR")
diagnostic_plot(mod22gs, wait_time=0)