add_data {gmvarkit} | R Documentation |
Add data to an object of class 'gsmvar' defining a GMVAR, StMVAR, or G-StMVAR model
Description
add_data
adds or updates data to object of class 'gsmvar
' that defines
a GMVAR, StMVAR, or G-StMVAR model. Also calculates mixing weights and quantile residuals accordingly.
Usage
add_data(data, gsmvar, calc_cond_moments = TRUE, calc_std_errors = FALSE)
Arguments
data |
a matrix or class |
gsmvar |
an object of class |
calc_cond_moments |
should conditional means and covariance matrices should be calculated?
Default is |
calc_std_errors |
should approximate standard errors be calculated? |
Value
Returns an object of class 'gsmvar' defining the specified GSMVAR, StMVAR, or G-StMVAR model with the data added to the model. If the object already contained data, the data will be updated.
References
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. (forthcoming). A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
See Also
fitGSMVAR
, GSMVAR
, iterate_more
, update_numtols
Examples
# GMVAR(1, 2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005,
0.03, 0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012,
0.136, 0.674)
mod12 <- GSMVAR(p=1, M=2, d=2, params=params12)
mod12
mod12_2 <- add_data(gdpdef, mod12)
mod12_2
# StMVAR(1, 2), d=2 model:
mod12t <- GSMVAR(p=1, M=2, d=2, params=c(params12, 10, 12), model="StMVAR")
mod12t
mod12t_2 <- add_data(gdpdef, mod12t)
mod12t_2
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s
mod22s_2 <- add_data(gdpdef, mod22s)
mod22s_2