initialvalue {gmmsslm}R Documentation

Initial values for ECM

Description

Inittial values for claculating the estimates based on solely on the classified features.

Usage

initialvalue(dat, zm, g, ncov = 2)

Arguments

dat

An n\times p matrix where each row represents an individual observation

zm

An n-dimensional vector containing the class labels including the missing-label denoted as NA.

g

Number of multivariate normal classes.

ncov

Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Value

pi

A g-dimensional initial vector of the mixing proportions.

mu

A initial p \times g matrix of the location parameters.

sigma

A p\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p\times p \times g if ncov=2.

Examples

n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma)
xi<-c(-0.5,1)
m<-rlabel(dat=dat$Y,pi=pi,mu=mu,sigma=sigma,xi=xi)
zm<-dat$clust
zm[m==1]<-NA
initlist<-initialvalue(g=4,zm=zm,dat=dat$Y,ncov=2)


[Package gmmsslm version 1.1.5 Index]