| errorrate {gmmsslm} | R Documentation | 
Error rate of the Bayes rule for two-class Gaussian homoscedastic model
Description
The optimal error rate of Bayes rule for two-class Gaussian homoscedastic model
Usage
errorrate(beta0, beta, pi, mu, sigma)
Arguments
| beta0 | An intercept parameter of the discriminant function coefficients. | 
| beta | A  | 
| pi | A g-dimensional vector for the initial values of the mixing proportions. | 
| mu | A  | 
| sigma | A  | 
Details
The optimal error rate of Bayes rule for two-class Gaussian homoscedastic model can be expressed as
err(\beta)=\pi_1\phi\{-\frac{\beta_0+\beta_1^T\mu_1}{(\beta_1^T\Sigma\beta_1)^{\frac{1}{2}}}\}+\pi_2\phi\{\frac{\beta_0+\beta_1^T\mu_2}{(\beta_1^T\Sigma\beta_1)^{\frac{1}{2}}}\}
where \phi is a normal probability function with mean \mu_i and covariance matrix \Sigma_i.
Value
| errval | A vector of error rate. |