erate {gmmsslm} | R Documentation |
Error rate of the Bayes rule for a g-class Gaussian mixture model
Description
Error rate of the Bayes rule for a g-class Gaussian mixture model
Usage
erate(dat, p, g, pi = NULL, mu = NULL, sigma = NULL, paralist = NULL, clust)
Arguments
dat |
An |
p |
Dimension of observation vecor. |
g |
Number of multivariate normal classes. |
pi |
A g-dimensional vector for the initial values of the mixing proportions. |
mu |
A |
sigma |
A |
paralist |
A list containing the required parameters |
clust |
An n-dimensional vector of class partition. |
Details
The error rate of the Bayes rule for a g-class Gaussian mixture model is given by
err(y;\theta)=1-\sum_{i=1}^g\pi_i Pr\{R(y;\theta)=i\mid Z \in C_i\}.
Here, we write
Pr\{R(y;\theta) \in C_i\mid Z\in C_i\}=\frac{\sum_{j=1}^nI_{C_i}(z_j)Q[z_j,R(y;\theta) ]}{\sum_{j=1}^nI_{C_i}(z_j)},
where Q[u,v]=1
if u=v
and Q[u,v]=0
otherwise, and I_{C_i}(z_j)
is an indicator function for the i
th class.
Value
errval |
a value of error rate |
Examples
n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma)
xi<-c(-0.5,1)
m<-rlabel(dat=dat$Y,pi=pi,mu=mu,sigma=sigma,xi=xi)
zm<-dat$clust
zm[m==1]<-NA
inits<-initialvalue(g=4,zm=zm,dat=dat$Y)
fit_pc<-gmmsslm(dat=dat$Y,zm=zm,pi=inits$pi,mu=inits$mu,sigma=inits$sigma,xi=xi,type='full')
parlist<-paraextract(fit_pc)
erate(dat=dat$Y,p=3,g=4,paralist=parlist,clust=dat$clust)