bayesclassifier {gmmsslm} | R Documentation |
Bayes' rule of allocation
Description
Bayes' rule of allocation
Usage
bayesclassifier(dat, p, g, pi = NULL, mu = NULL, sigma = NULL, paralist = NULL)
Arguments
dat |
An |
p |
Dimension of observation vecor. |
g |
Number of multivariate normal classes. |
pi |
A g-dimensional vector for the initial values of the mixing proportions. |
mu |
A |
sigma |
A |
paralist |
A list containing the required parameters |
Details
Classifier specified by Bayes' rule
The classifier/Bayes rule of allocation R(y_j;\theta)
assigns an entity with observation y_j
to class C_k
(that is, R(y_j;\theta)=k
) if
k=\arg\max_i \tau_i(y_j;\theta),
Value
clust |
Class membership for the ith entity |
Examples
n <- 150
pi <- c(0.25, 0.25, 0.25, 0.25)
sigma <- array(0, dim = c(3, 3, 4))
sigma[, , 1] <- diag(1, 3)
sigma[, , 2] <- diag(2, 3)
sigma[, , 3] <- diag(3, 3)
sigma[, , 4] <- diag(4, 3)
mu <- matrix(c(0.2, 0.3, 0.4, 0.2, 0.7, 0.6, 0.1, 0.7, 1.6, 0.2, 1.7, 0.6), 3, 4)
dat <- rmix(n = n, pi = pi, mu = mu, sigma = sigma)
params <- list(pi=pi,mu = mu, sigma = sigma)
clust <- bayesclassifier(dat=dat$Y,p=3,g=4,paralist=params)