gmfd_test {gmfd} | R Documentation |
Two-sample hypotesis tests
Description
Performs a two sample hypotesis tests on two samples of functional data.
Usage
gmfd_test(FD1, FD2, conf.level = 0.95, stat_test, p = NULL,
k_trunc = NULL)
Arguments
FD1 |
a functional data object of type |
FD2 |
a functional data object of type |
conf.level |
confidence level of the test. |
stat_test |
the chosen test statistic to be used: |
p |
a vector of positive numeric value containing the parameters of the regularizing function for the generalized Mahalanobis distance. |
k_trunc |
a positive numeric value representing the number of components at which the truncated mahalanobis distance must be truncated |
Value
The function returns a list with the following components:
statistic
the value of the test statistic.
quantile
the value of the quantile.
p.value
the p-value for the test.
References
Ghiglietti A., Ieva F., Paganoni A. M. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests, Journal of Statistical Planning and Inference, 180:49-68.
Ghiglietti A., Paganoni A. M. (2017). Exact tests for the means of gaussian stochastic processes. Statics & Probability Letters, 131:102–107.
See Also
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
s <- 0
for ( k in 4:K ) {
s <- s + sqrt( rho[k] ) * theta[k,]
}
m2 <- m1 + 0.1 * s
# Simulate the functional data
x1 <- gmfd_simulate( n, m1, rho = rho, theta = theta )
x2 <- gmfd_simulate( n, m2, rho = rho, theta = theta )
FD1 <- funData( t, x1 )
FD2 <- funData( t, x2 )
output <- gmfd_test( FD1, FD2, 0.95, "mahalanobis", p = 10^5 )