funDist {gmfd} | R Documentation |
Distance function
Description
This function allows you to compute the distance between two curves with the chosen metric.
Usage
funDist(FD1, FD2, metric, p = NULL, lambda = NULL, phi = NULL,
k_trunc = NULL)
Arguments
FD1 |
a functional data object of type |
FD2 |
a functional data object of type |
metric |
the chosen distance to be used: |
p |
a positive numeric value containing the parameter of the regularizing function for the generalized Mahalanobis distance. |
lambda |
a vector containing the eigenvalues in descending order of the functional data from which the curves are extracted. |
phi |
a matrix containing the eigenfunctions of the functional data in its columns from which the curves are extracted. |
k_trunc |
a positive numeric value representing the number of components at which the truncated mahalanobis distance must be truncated |
Value
The function returns a numeric value indicating the distance between the two curves.
References
Ghiglietti A., Ieva F., Paganoni A. M. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests, Journal of Statistical Planning and Inference, 180:49-68.
Ghiglietti A., Paganoni A. M. (2017). Exact tests for the means of gaussian stochastic processes. Statistics & Probability Letters, 131:102–107.
Examples
# Define parameters:
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K ) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
z <- gmfd_simulate( n, m1, rho = rho, theta = theta )
# Extract two rows of the functional data
x <- funData( t, z[1, ] )
y <- funData( t, z[2, ] )
lambda <- eigen(cov(z))$values
phi <- eigen(cov(z))$vectors
d <- funDist( x, y, metric = "mahalanobis", p = 1, lambda = lambda, phi = phi )