trafficfam3 {gmfamm} | R Documentation |
Draft of family for traffic example
Description
Fix four distributional assumptions and supply derivatives. Use gamma for speed data. Use negative binomial for count data.
Usage
trafficfam3(...)
Arguments
... |
Not used. |
Value
A bamlss family object.
Examples
# Construct data
set.seed(123)
# Number of subjects
n <- 10
# Number of observations
ni <- 3
# Covariate vector
x <- rep(rnorm(n), each = ni)
t <- rep(c(0, 0.5, 1), times = n)
# Additive predictor
eta_1 <- eta_2 <- eta_3 <- eta_4 <- t + 0.5*x
# Outcomes
y1 <- rnbinom(n*ni, exp(eta_1), 0.3)
y2 <- rnbinom(n*ni, exp(eta_2), 0.4)
y3 <- rgamma(n*ni, shape = 0.3, scale = exp(eta_3) / 0.3)
y4 <- rgamma(n*ni, shape = 0.4, scale = exp(eta_4) / 0.4)
# Data format
dat <- data.frame(
id = factor(rep(seq_len(n), each = ni)),
y = c(y1, y2, y3, y4),
dim = factor(rep(c(1:4), each = n*ni)),
t = t,
x = x,
fpc = 1
)
# Specify formula
f <- list(
gm(y, dim) ~ t + x,
sigma1 ~ 1,
mu2 ~ t + x,
sigma2 ~ 1,
mu3 ~ t + x,
sigma3 ~ 1,
mu4 ~ t + x,
sigma4 ~ 1,
Lambda ~ -1 + s(id, by = fpc, bs = "re")
)
# Model
b <- bamlss(f, family = trafficfam3, n.iter = 20, burnin = 10,
data = dat)
[Package gmfamm version 0.1.0 Index]