glue_sql {glue} | R Documentation |
Interpolate strings with SQL escaping
Description
SQL databases often have custom quotation syntax for identifiers and strings
which make writing SQL queries error prone and cumbersome to do. glue_sql()
and
glue_data_sql()
are analogs to glue()
and glue_data()
which handle the
SQL quoting. glue_sql_collapse()
can be used to collapse DBI::SQL()
objects.
They automatically quote character results, quote identifiers if the glue
expression is surrounded by backticks '`
' and do not quote
non-characters such as numbers. If numeric data is stored in a character
column (which should be quoted) pass the data to glue_sql()
as a
character.
Returning the result with DBI::SQL()
will suppress quoting if desired for
a given value.
Note parameterized queries are generally the safest and most efficient way to pass user defined values in a query, however not every database driver supports them.
If you place a *
at the end of a glue expression the values will be
collapsed with commas. This is useful for the SQL IN Operator
for instance.
Usage
glue_sql(
...,
.con,
.sep = "",
.envir = parent.frame(),
.open = "{",
.close = "}",
.na = DBI::SQL("NULL"),
.null = character(),
.comment = "#",
.literal = FALSE,
.trim = TRUE
)
glue_data_sql(
.x,
...,
.con,
.sep = "",
.envir = parent.frame(),
.open = "{",
.close = "}",
.na = DBI::SQL("NULL"),
.null = character(),
.comment = "#",
.literal = FALSE,
.trim = TRUE
)
Arguments
... |
[ For `glue_data()`, elements in `...` override the values in `.x`. |
.con |
[ |
.sep |
[ |
.envir |
[ |
.open |
[ |
.close |
[ |
.na |
[ |
.null |
[ |
.comment |
[ |
.literal |
[ |
.trim |
[ |
.x |
[ |
Value
A DBI::SQL()
object with the given query.
See Also
glue_sql_collapse()
to collapse DBI::SQL()
objects.
Examples
con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
iris2 <- iris
colnames(iris2) <- gsub("[.]", "_", tolower(colnames(iris)))
DBI::dbWriteTable(con, "iris", iris2)
var <- "sepal_width"
tbl <- "iris"
num <- 2
val <- "setosa"
glue_sql("
SELECT {`var`}
FROM {`tbl`}
WHERE {`tbl`}.sepal_length > {num}
AND {`tbl`}.species = {val}
", .con = con)
# If sepal_length is store on the database as a character explicitly convert
# the data to character to quote appropriately.
glue_sql("
SELECT {`var`}
FROM {`tbl`}
WHERE {`tbl`}.sepal_length > {as.character(num)}
AND {`tbl`}.species = {val}
", .con = con)
# `glue_sql()` can be used in conjuction with parameterized queries using
# `DBI::dbBind()` to provide protection for SQL Injection attacks
sql <- glue_sql("
SELECT {`var`}
FROM {`tbl`}
WHERE {`tbl`}.sepal_length > ?
", .con = con)
query <- DBI::dbSendQuery(con, sql)
DBI::dbBind(query, list(num))
DBI::dbFetch(query, n = 4)
DBI::dbClearResult(query)
# `glue_sql()` can be used to build up more complex queries with
# interchangeable sub queries. It returns `DBI::SQL()` objects which are
# properly protected from quoting.
sub_query <- glue_sql("
SELECT *
FROM {`tbl`}
", .con = con)
glue_sql("
SELECT s.{`var`}
FROM ({sub_query}) AS s
", .con = con)
# If you want to input multiple values for use in SQL IN statements put `*`
# at the end of the value and the values will be collapsed and quoted appropriately.
glue_sql("SELECT * FROM {`tbl`} WHERE sepal_length IN ({vals*})",
vals = 1, .con = con)
glue_sql("SELECT * FROM {`tbl`} WHERE sepal_length IN ({vals*})",
vals = 1:5, .con = con)
glue_sql("SELECT * FROM {`tbl`} WHERE species IN ({vals*})",
vals = "setosa", .con = con)
glue_sql("SELECT * FROM {`tbl`} WHERE species IN ({vals*})",
vals = c("setosa", "versicolor"), .con = con)
# If you need to reference variables from multiple tables use `DBI::Id()`.
# Here we create a new table of nicknames, join the two tables together and
# select columns from both tables. Using `DBI::Id()` and the special
# `glue_sql()` syntax ensures all the table and column identifiers are quoted
# appropriately.
iris_db <- "iris"
nicknames_db <- "nicknames"
nicknames <- data.frame(
species = c("setosa", "versicolor", "virginica"),
nickname = c("Beachhead Iris", "Harlequin Blueflag", "Virginia Iris"),
stringsAsFactors = FALSE
)
DBI::dbWriteTable(con, nicknames_db, nicknames)
cols <- list(
DBI::Id(iris_db, "sepal_length"),
DBI::Id(iris_db, "sepal_width"),
DBI::Id(nicknames_db, "nickname")
)
iris_species <- DBI::Id(iris_db, "species")
nicknames_species <- DBI::Id(nicknames_db, "species")
query <- glue_sql("
SELECT {`cols`*}
FROM {`iris_db`}
JOIN {`nicknames_db`}
ON {`iris_species`}={`nicknames_species`}",
.con = con
)
query
DBI::dbGetQuery(con, query, n = 5)
DBI::dbDisconnect(con)