pcfglobal {globalKinhom} | R Documentation |
(cross) pair correlation functions with a global intensity reweighting
Description
Compute g_\textrm{global}
or c_\textrm{global}
Usage
pcfglobal(X, lambda=NULL, ..., sigma=bw.CvL(X), r=NULL, rmax=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15, normtol=.005, ratio=FALSE,
discrete.lambda=FALSE, divisor=c("r", "d"),
leaveoneout=TRUE, interpolate=TRUE, interpolate.fac=10, exp_prs=NULL,
interpolate.maxdx=diameter(as.owin(X))/100, dump=FALSE)
pcfcross.global(X,Y, lambdaX=NULL, lambdaY=NULL, ...,
sigma=bw.CvL(X), r=NULL, rmax=NULL, kernel="epanechnikov", bw=NULL,
stoyan=0.15, normtol=.005, ratio=FALSE, discrete.lambda=FALSE,
divisor=c("r", "d"), analytical=NULL, interpolate=TRUE,
interpolate.fac=10, exp_prs=NULL,
interpolate.maxdx=diameter(as.owin(X))/100, dump=FALSE)
Arguments
X , Y |
point process of type |
lambda , lambdaX , lambdaY |
intensity function estimates corresponding to |
... |
extra args passed to density.ppp or densityfun.ppp, if applicable. |
sigma |
Bandwidth value to use for kernel-based intensity estimation, intensity functions and
|
r |
Values of |
rmax |
Maximum |
kernel |
Kernel type for smoothing of pcf. |
bw |
Kernel bandwidth for smoothing of pcf. |
stoyan |
Coefficient for Stoyan's bandwidth selection rule. See
|
normtol |
A tolerance to use for expectedPairs or expectedCrossPairs when computing monte-carlo
estimates of the normalizing factor |
ratio |
If |
divisor |
Whether to use the evaluation distance ( |
analytical |
If |
discrete.lambda |
If |
interpolate |
If |
interpolate.fac |
If |
leaveoneout |
Use the leave-one-out estimator for |
exp_prs |
A function that returns values for
|
interpolate.maxdx |
Upper bound on allowable lattice spacing for interpolation. |
dump |
For debugging purposes, include computed values of |
Value
The return value is an object of class fv
,
just as for pcf
and
pcfinhom
. The object contains columns r
,
theo
, and global
, corresponding respectively to the argument
r
, the theoretical values of g(r)
for a Poisson process, and
g_\mathrm{global}(r)
.
Author(s)
Thomas Shaw <shawtr@umich.edu>
References
T Shaw, J Møller, R Waagepetersen. 2020. “Globally Intensity-Reweighted Estimators for
K
- and pair correlation functions”. arXiv:2004.00527 [stat.ME].
See Also
Examples
rho <- funxy(function(x,y) 80*(1+x), owin())
X <- rpoispp(rho)
g <- pcfglobal(X)
#plot(g)