| pcfglobal {globalKinhom} | R Documentation |
(cross) pair correlation functions with a global intensity reweighting
Description
Compute g_\textrm{global} or c_\textrm{global}
Usage
pcfglobal(X, lambda=NULL, ..., sigma=bw.CvL(X), r=NULL, rmax=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15, normtol=.005, ratio=FALSE,
discrete.lambda=FALSE, divisor=c("r", "d"),
leaveoneout=TRUE, interpolate=TRUE, interpolate.fac=10, exp_prs=NULL,
interpolate.maxdx=diameter(as.owin(X))/100, dump=FALSE)
pcfcross.global(X,Y, lambdaX=NULL, lambdaY=NULL, ...,
sigma=bw.CvL(X), r=NULL, rmax=NULL, kernel="epanechnikov", bw=NULL,
stoyan=0.15, normtol=.005, ratio=FALSE, discrete.lambda=FALSE,
divisor=c("r", "d"), analytical=NULL, interpolate=TRUE,
interpolate.fac=10, exp_prs=NULL,
interpolate.maxdx=diameter(as.owin(X))/100, dump=FALSE)
Arguments
X, Y |
point process of type |
lambda, lambdaX, lambdaY |
intensity function estimates corresponding to |
... |
extra args passed to density.ppp or densityfun.ppp, if applicable. |
sigma |
Bandwidth value to use for kernel-based intensity estimation, intensity functions and
|
r |
Values of |
rmax |
Maximum |
kernel |
Kernel type for smoothing of pcf. |
bw |
Kernel bandwidth for smoothing of pcf. |
stoyan |
Coefficient for Stoyan's bandwidth selection rule. See
|
normtol |
A tolerance to use for expectedPairs or expectedCrossPairs when computing monte-carlo
estimates of the normalizing factor |
ratio |
If |
divisor |
Whether to use the evaluation distance ( |
analytical |
If |
discrete.lambda |
If |
interpolate |
If |
interpolate.fac |
If |
leaveoneout |
Use the leave-one-out estimator for |
exp_prs |
A function that returns values for
|
interpolate.maxdx |
Upper bound on allowable lattice spacing for interpolation. |
dump |
For debugging purposes, include computed values of |
Value
The return value is an object of class fv,
just as for pcf and
pcfinhom. The object contains columns r,
theo, and global, corresponding respectively to the argument
r, the theoretical values of g(r) for a Poisson process, and
g_\mathrm{global}(r).
Author(s)
Thomas Shaw <shawtr@umich.edu>
References
T Shaw, J Møller, R Waagepetersen. 2020. “Globally Intensity-Reweighted Estimators for
K- and pair correlation functions”. arXiv:2004.00527 [stat.ME].
See Also
Examples
rho <- funxy(function(x,y) 80*(1+x), owin())
X <- rpoispp(rho)
g <- pcfglobal(X)
#plot(g)