expectedPairs {globalKinhom} | R Documentation |
Expected pairs in an inhomogeneous poisson process
Description
Compute the expected number of pairs at a given displacement h in a poisson
process with a given intensity function. This corresponds to the integrals
\gamma
of Shaw et al. 2020. The various functions correspond
to the univariate and bivariate versions of the anisotropic or isotropic
versions of \gamma
. The final two options (expectedPairs_kernloo
and expectedPairs_iso_kernloo
), provide implementations of the leave-out
kernel estimates of \gamma
: \bar \gamma(h)
and
\bar \gamma ^\mathrm{iso}(r)
. In those cases, the point pattern
X
itself is passed to the routine, rather than the (true or estimated) intensities
rho
etc. The estimators for \bar \gamma(h)
are only applicable
to univariate processes. See Shaw et al, 2020 for details.
Usage
expectedPairs(rho, hx, hy=NULL, method=c("mc", "lattice"),
tol=.005, dx=diff(as.owin(rho)$xrange)/200, maxeval=1e6,
maxsamp=5e3)
expectedCrossPairs(rho1, rho2=NULL, hx, hy=NULL, method=c("mc", "lattice"),
tol=.005, dx=diff(as.owin(rho1)$xrange)/200, maxeval=1e6,
maxsamp=5e3)
expectedPairs_iso(rho, r, tol=.001, maxeval=1e6, maxsamp=5e3)
expectedCrossPairs_iso(rho1, rho2=NULL, r, tol=.001, maxeval=1e6, maxsamp=5e3)
expectedPairs_kernloo(X, hx,hy, sigma=bw.CvL, tol=.005, maxeval=1e6,
maxsamp=5e3, leaveoneout=TRUE)
expectedPairs_iso_kernloo(X, r, sigma=bw.CvL, tol=.001, maxeval=1e6,
maxsamp=5e3, leaveoneout=TRUE)
Arguments
rho1 , rho2 , rho |
Intensity functions, either of class |
X |
Point pattern of class |
hx , hy |
For expectedPairs and expectedCrossPairs (i.e. |
r |
For the isotropic versions |
method |
Either mc (the default) or lattice. Compute integral using monte-carlo or on a lattice. |
tol |
A tolerance for how precise the integral should be. This is compared to a standard error for the mc estimate. |
sigma |
Smoothing bandwidth for direct kernel-based estimators |
leaveoneout |
Use leave-out estimators. This should generally be true except for the purpose of evaluating the bias of the standard estimators. See Shaw et al 2020 for details. |
maxeval |
Maximum number of evaluations of rho per iteration. Prevents memory-related crashes that can occur. |
maxsamp |
Maximum number of monte carlo samples per iteration. If this is too large, you may do more work than required to achieve tol. |
dx |
if method=="lattice", a lattice spacing for the computation. defaults to .01. |
Value
The return value is a numeric vector with length equal to the number of displacements h passed
Author(s)
Thomas Shaw <shawtr@umich.edu>
References
T Shaw, J Møller, R Waagepetersen. 2020. “Globally Intensity-Reweighted Estimators for
K
- and pair correlation functions”. arXiv:2004.00527 [stat.ME].
See Also
pcfglobal
, Kglobal
, which use these functions to compute
the normalization functions \gamma
.