| Kglobal {globalKinhom} | R Documentation |
(cross) K functions with a global intensity reweighting
Description
Compute K_\textrm{global}
Usage
Kglobal(X, lambda=NULL, ..., sigma=bw.CvL(X), r=NULL, rmax=NULL, breaks=NULL,
normtol=.005, discrete.lambda=FALSE,
interpolate=TRUE, interpolate.fac=10, isotropic=TRUE,
leaveoneout=TRUE, exp_prs=NULL,
interpolate.maxdx=diameter(as.owin(X))/100, dump=FALSE)
Kcross.global(X, Y, lambdaX=NULL, lambdaY=NULL, ..., sigma=bw.CvL(X), r=NULL,
rmax=NULL, breaks=NULL, normtol=.005,
discrete.lambda=FALSE, interpolate=TRUE, isotropic=TRUE,
interpolate.fac=10, leaveoneout=TRUE, exp_prs=NULL,
interpolate.maxdx=diameter(as.owin(X))/100, dump=FALSE)
Arguments
X, Y |
point process of type |
lambda, lambdaX, lambdaY |
intensity function estimates corresponding to |
... |
extra args passed to density.ppp or densityfun.ppp, if applicable. |
sigma |
Bandwidth value to use for kernel-based intensity estimation, intensity functions and
|
r |
Values of |
rmax |
Maximum |
breaks |
For internal use only. |
normtol |
A tolerance to use for expectedPairs or expectedCrossPairs when computing monte-carlo
estimates of the normalizing factor |
discrete.lambda |
If |
interpolate |
If |
interpolate.fac |
If |
isotropic |
Set to |
leaveoneout |
Use the leave-one-out estimator for |
exp_prs |
A function that returns values for
|
interpolate.maxdx |
Upper bound on allowable lattice spacing for interpolation. |
dump |
For debugging purposes, include computed values of |
Value
The return value is an object of class fv,
just as for Kest and
Kinhom. The
object contains columns r, theo, and
global, corresponding respectively to the argument r, the theoretical
values of K(r) for a Poisson process, and K_\mathrm{global}(r).
Author(s)
Thomas Shaw <shawtr@umich.edu>
References
T Shaw, J Møller, R Waagepetersen. 2020. “Globally Intensity-Reweighted Estimators for
K- and pair correlation functions”. arXiv:2004.00527 [stat.ME].
See Also
Examples
rho <- funxy(function(x,y) 80*(1+x), owin())
X <- rpoispp(rho)
K <- Kglobal(X)
#plot(K)