predict.glmtlp {glmtlp} | R Documentation |
Predict Method for a "glmtlp" Object
Description
Predicts fitted values, logits, coefficients and more from a fitted
glmtlp
object.
Usage
## S3 method for class 'glmtlp'
predict(
object,
X,
type = c("link", "response", "class", "coefficients", "numnz", "varnz"),
lambda = NULL,
kappa = NULL,
which = 1:(ifelse(object$penalty == "l0", length(object$kappa),
length(object$lambda))),
...
)
## S3 method for class 'glmtlp'
coef(
object,
lambda = NULL,
kappa = NULL,
which = 1:(ifelse(object$penalty == "l0", length(object$kappa),
length(object$lambda))),
drop = TRUE,
...
)
Arguments
object |
Fitted |
X |
Matrix of new values for |
type |
Type of prediction to be made. For |
lambda |
Value of the penalty parameter |
kappa |
Value of the penalty parameter |
which |
Index of the penalty parameter |
... |
Additional arguments. |
drop |
Whether or not keep the dimension that is of length 1. |
Details
coef(...)
is equivalent to predict(type="coefficients",...)
Value
The object returned depends on type
.
Author(s)
Chunlin Li, Yu Yang, Chong Wu
Maintainer: Yu Yang yang6367@umn.edu
References
Shen, X., Pan, W., & Zhu, Y. (2012).
Likelihood-based selection and sharp parameter estimation.
Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013).
On constrained and regularized high-dimensional regression.
Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021).
Inference for a Large Directed Graphical Model with Interventions.
arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014).
A coordinate majorization descent algorithm for l1 penalized learning.
Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.
See Also
print
, predict
, coef
and plot
methods,
and the cv.glmtlp
function.
Examples
# Gaussian
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
fit <- glmtlp(X, y, family = "gaussian", penalty = "l1")
predict(fit, X = X[1:5, ])
coef(fit)
predict(fit, X = X[1:5, ], lambda = 0.1)
# Binomial
X <- matrix(rnorm(100 * 20), 100, 20)
y <- sample(c(0,1), 100, replace = TRUE)
fit <- glmtlp(X, y, family = "binomial", penalty = "l1")
coef(fit)
predict(fit, X = X[1:5, ], type = "response")
predict(fit, X = X[1:5, ], type = "response", lambda = 0.01)
predict(fit, X = X[1:5, ], type = "class", lambda = 0.01)
predict(fit, X = X[1:5, ], type = "numnz", lambda = 0.01)