predict.cv.glmtlp {glmtlp} | R Documentation |
Predict Method for a "cv.glmtlp" Object.
Description
Makes predictions for a cross-validated glmtlp model, using
the stored "glmtlp"
object, and the optimal value chosen for
lambda
.
Usage
## S3 method for class 'cv.glmtlp'
predict(
object,
X,
type = c("link", "response", "class", "coefficients", "numnzs", "varnzs"),
lambda = NULL,
kappa = NULL,
which = object$idx.min,
...
)
## S3 method for class 'cv.glmtlp'
coef(object, lambda = NULL, kappa = NULL, which = object$idx.min, ...)
Arguments
object |
Fitted |
X |
X Matrix of new values for |
type |
Type of prediction to be made. For |
lambda |
Value of the penalty parameter |
kappa |
Value of the penalty parameter |
which |
Index of the penalty parameter |
... |
Additional arguments. |
Value
The object returned depends on type
.
Author(s)
Chunlin Li, Yu Yang, Chong Wu
Maintainer: Yu Yang yang6367@umn.edu
References
Shen, X., Pan, W., & Zhu, Y. (2012).
Likelihood-based selection and sharp parameter estimation.
Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013).
On constrained and regularized high-dimensional regression.
Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021).
Inference for a Large Directed Graphical Model with Interventions.
arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014).
A coordinate majorization descent algorithm for l1 penalized learning.
Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.
See Also
print
, predict
, coef
and plot
methods,
and the cv.glmtlp
function.
Examples
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
cv.fit <- cv.glmtlp(X, y, family = "gaussian", penalty = "l1")
predict(cv.fit, X = X[1:5, ])
coef(cv.fit)
predict(cv.fit, X = X[1:5, ], lambda = 0.1)