glmertree {glmertree} | R Documentation |
(Generalized) Linear Mixed Model Trees
Description
Model-based recursive partitioning based on (generalized) linear mixed models.
Usage
lmertree(formula, data, weights = NULL, cluster = NULL,
ranefstart = NULL, offset = NULL, joint = TRUE,
abstol = 0.001, maxit = 100, dfsplit = TRUE, verbose = FALSE,
plot = FALSE, REML = TRUE, lmer.control = lmerControl(), ...)
glmertree(formula, data, family = "binomial", weights = NULL,
cluster = NULL, ranefstart = NULL, offset = NULL, joint = TRUE,
abstol = 0.001, maxit = 100, dfsplit = TRUE, verbose = FALSE,
plot = FALSE, nAGQ = 1L, glmer.control = glmerControl(), ...)
Arguments
formula |
formula specifying the response variable and a three-part right-hand-side describing the regressors, random effects, and partitioning variables, respectively. For details see below. |
data |
data.frame to be used for estimating the model tree. |
family |
family specification for |
weights |
numeric. An optional numeric vector of weights. Can be a
name of a column in data or a vector of length |
cluster |
optional vector of cluster IDs to be employed for clustered
covariances in the parameter stability tests. Can be a name of a column
in |
ranefstart |
|
offset |
optional numeric vector to be included in the linear predictor
with a coeffcient of one. Note that |
joint |
logical. Should the fixed effects from the tree be (re-)estimated jointly along with the random effects? |
abstol |
numeric. The convergence criterion used for estimation of the model.
When the difference in log-likelihoods of the random-effects model from two
consecutive iterations is smaller than |
maxit |
numeric. The maximum number of iterations to be performed in estimation of the model tree. |
dfsplit |
logical or numeric. |
verbose |
Should the log-likelihood value of the estimated random-effects model be printed for every iteration of the estimation? |
plot |
Should the tree be plotted at every iteration of the estimation? Note that selecting this option slows down execution of the function. |
REML |
logical scalar. Should the fixed-effects estimates be chosen to
optimize the REML criterion (as opposed to the log-likelihood)? Will be
passed to funtion |
nAGQ |
integer scalar. Specifies the number of points per axis for evaluating
the adaptive Gauss-Hermite approximation to the log-likelihood, to be passed
to function |
lmer.control , glmer.control |
list. An optional list with control
parameters to be passed to |
... |
Additional arguments to be passed to |
Details
(G)LMM trees learn a tree where each terminal node is associated with different fixed-effects regression coefficients while adjusting for global random effects (such as a random intercept). This allows for detection of subgroups with different fixed-effects parameter estimates, keeping the random effects constant throughout the tree (i.e., random effects are estimated globally). The estimation algorithm iterates between (1) estimation of the tree given an offset of random effects, and (2) estimation of the random effects given the tree structure. See Fokkema et al. (2018) for a detailed introduction.
To specify all variables in the model a formula
such as
y ~ x1 + x2 | random | z1 + z2 + z3
is used, where y
is the
response, x1
and x2
are the regressors in every node of the
tree, random
is the random effects, and z1
to z3
are
the partitioning variables considered for growing the tree. If random
is only a single variable such as id
a random intercept with respect
to id
is used. Alternatively, it may be an explicit random-effects
formula such as (1 | id)
or a more complicated formula such as
((1+time) | id)
. (Note that in the latter two formulas, the brackets
are necessary to protect the pipes in the random-effects formulation.)
In the random-effects model from step (2), two strategies are available:
Either the fitted values from the tree can be supplied as an offset
(joint = FALSE
) so that only the random effects are estimated.
Or the fixed effects are (re-)estimated along with the random effects
using a nesting factor with nodes from the tree (joint = TRUE
).
In the former case, the estimation of each random-effects model is typically
faster, but more iterations are required.
The code is still under development and might change in future versions.
Value
The function returns a list with the following objects:
tree |
The final |
lmer |
The final |
ranef |
The corresponding random effects of |
varcorr |
The corresponding |
variance |
The corresponding |
data |
The dataset specified with the |
loglik |
The log-likelihood value of the last iteration. |
iterations |
The number of iterations used to estimate the |
maxit |
The maximum number of iterations specified with the |
ranefstart |
The random effects used as an offset, as specified with
the |
formula |
The formula as specified with the |
randomformula |
The formula as specified with the |
abstol |
The prespecified value for the change in log-likelihood to evaluate
convergence, as specified with the |
mob.control |
A list containing control parameters passed to
|
lmer.control |
A list containing control parameters passed to
|
joint |
Whether the fixed effects from the tree were (re-)estimated jointly along
with the random effects, specified with the |
References
Fokkema M, Smits N, Zeileis A, Hothorn T, Kelderman H (2018). “Detecting Treatment-Subgroup Interactions in Clustered Data with Generalized Linear Mixed-Effects Model Trees”. Behavior Research Methods, 50(5), 2016-2034. doi:10.3758/s13428-017-0971-x
Fokkema M, Edbrooke-Childs J & Wolpert M (2021). “Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method for multilevel and longitudinal data.” Psychotherapy Research, 31(3), 329-341. doi:10.1080/10503307.2020.1785037
Fokkema M & Zeileis A (2024). Subgroup detection in linear growth curve models with generalized linear mixed model (GLMM) trees. Behavior Research Methods. doi:10.3758/s13428-024-02389-1
See Also
plot.lmertree
, plot.glmertree
,
cv.lmertree
, cv.glmertree
,
GrowthCurveDemo
,
lmer
, glmer
,
lmtree
, glmtree
Examples
## artificial example data
data("DepressionDemo", package = "glmertree")
## fit normal linear regression LMM tree for continuous outcome
lt <- lmertree(depression ~ treatment | cluster | age + anxiety + duration,
data = DepressionDemo)
print(lt)
plot(lt, which = "all") # default behavior, may also be "tree" or "ranef"
coef(lt)
ranef(lt)
predict(lt, type = "response") # default behavior, may also be "node"
predict(lt, re.form = NA) # excludes random effects, see ?lme4::predict.merMod
residuals(lt)
VarCorr(lt) # see lme4::VarCorr
## fit logistic regression GLMM tree for binary outcome
gt <- glmertree(depression_bin ~ treatment | cluster | age + anxiety + duration,
data = DepressionDemo)
print(gt)
plot(gt, which = "all") # default behavior, may also be "tree" or "ranef"
coef(gt)
ranef(gt)
predict(gt, type = "response") # default behavior, may also be "node" or "link"
predict(gt, re.form = NA) # excludes random effects, see ?lme4::predict.merMod
residuals(gt)
VarCorr(gt) # see lme4::VarCorr
## Alternative specification for binomial family: no. of successes and failures
DepressionDemo$failures <- as.numeric(DepressionDemo$depression_bin) - 1
DepressionDemo$successes <- 1 - DepressionDemo$failures
gt <- glmertree(cbind(failures, successes) ~ treatment | cluster | age + anxiety + duration,
data = DepressionDemo, ytype = "matrix") ## see also ?partykit::mob_control