summary.misrepEM {glmMisrep} | R Documentation |
Summarize a 'misrepEM' Model Fit
Description
summary
method for class 'misrepEM'.
Usage
## S3 method for class 'misrepEM'
summary(object, ...)
## S3 method for class 'summary.misrepEM'
print(x, ...)
Arguments
object |
an object of class " |
x |
an object of class " |
... |
currently not used. |
Value
summary.misrepEM
returns an object of class "summary.misrepEM"
, a list of length 5 with the following components:
coefficients |
a |
ICs |
a named numeric vector of length three, containing the Akaike Information Criterion (AIC), the corrected AIC (AICc) and the Bayesian Information Criterion (BIC). |
loglik |
numeric. The log-likelihood of the fitted |
lambda |
numeric. The estimated prevalence of misrepresentation. |
lambda_stderror |
numeric. The standard error of the estimated prevalence of misrepresentation. |
References
Xia, Michelle, Rexford Akakpo, and Matthew Albaugh. "Maximum Likelihood Approaches to Misrepresentation Models in GLM ratemaking: Model Comparisons." Variance 16.1 (2023).
Akakpo, R. M., Xia, M., & Polansky, A. M. (2019). Frequentist inference in insurance ratemaking models adjusting for misrepresentation. ASTIN Bulletin: The Journal of the IAA, 49(1), 117-146.
Xia, M., Hua, L., & Vadnais, G. (2018). Embedded predictive analysis of misrepresentation risk in GLM ratemaking models. Variance, 12(1), 39-58.
Examples
# Simulate data
n <- 2000
p0 <- 0.25
X1 <- rbinom(n, 1, 0.4)
X2 <- rnorm(n, 0, 1)
X3 <- rbeta(n, 2, 1)
theta0 <- 0.3
V <- rbinom(n,1,theta0)
V_star <- V
V_star[V==1] <- rbinom(sum(V==1),1,1-p0)
a0 <- 1
a1 <- 2
a2 <- 0
a3 <- 4
a4 <- 2
mu <- exp(a0 + a1*X1 + a2*X2 + a3*X3 + a4*V)
phi <- 0.2
alpha0 <- 1/phi
beta <- 1/mu/phi
Y <- rgamma(n, alpha0, beta)
data <- data.frame(Y = Y, X1 = X1, X2 = X2, X3 = X3, V_star = V_star)
gamma_fit <- gammaRegMisrepEM(formula = Y ~ X1 + X2 + X3 + V_star,
v_star = "V_star", data = data)
summary(gamma_fit)
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.00137 0.03413 29.33857 <2e-16 ***
# X1 2.01388 0.02154 93.48440 <2e-16 ***
# X2 -0.00193 0.01038 -0.18589 0.85255
# X3 4.00101 0.04560 87.74528 <2e-16 ***
# V_star 2.00567 0.02240 89.54515 <2e-16 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# ---
# AIC AICc BIC
# 23362.50 23362.56 23401.71
# ---
# Log-Likelihood
# -11674.25
# ---
# Lambda: 0.09635239 std.err: 0.007641834