predict.glamlasso {glamlasso} | R Documentation |
Make Prediction From a glamlasso Object
Description
Given new covariate data this function computes the linear predictors
based on the estimated model coefficients in an object produced by the function glamlasso
. Note that the
data can be supplied in two different formats: i) as a matrix (
is the number of model
coefficients and
is the number of new data points) or ii) as a list of two or three matrices each of
size
(
is the number of new marginal data points in the
th dimension).
Usage
## S3 method for class 'glamlasso'
predict(object, x = NULL, X = NULL, ...)
Arguments
object |
An object of Class glamlasso, produced with |
x |
a matrix of size |
X |
A list containing the data matrices each of size |
... |
ignored |
Value
A list of length nlambda
containing the linear predictors for each model. If
new covariate data is supplied in one matrix
x
each
item is a vector of length . If the data is supplied as a list of
matrices each of size
, each item is an array of size
, with
.
Author(s)
Adam Lund
Examples
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))
fit <- glamlasso(list(X1, X2, X3), Y)
##new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[100]]
##new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, X = list(X1, X2, X3))[[100]]