glamlassoRR {glamlasso} | R Documentation |
Penalized reduced rank regression in a GLAM
Description
Efficient design matrix free procedure for fitting large scale penalized reduced rank
regressions in a 3-dimensional generalized linear array model. To obtain a factorization of the parameter array,
the glamlassoRR
function performes a block relaxation scheme within the gdpg algorithm, see Lund and Hansen, 2018.
Usage
glamlassoRR(X,
Y,
Z = NULL,
family = "gaussian",
penalty = "lasso",
intercept = FALSE,
weights = NULL,
betainit = NULL,
alphainit = NULL,
nlambda = 100,
lambdaminratio = 1e-04,
lambda = NULL,
penaltyfactor = NULL,
penaltyfactoralpha = NULL,
reltolinner = 1e-07,
reltolouter = 1e-04,
reltolalt = 1e-04,
maxiter = 15000,
steps = 1,
maxiterinner = 3000,
maxiterouter = 25,
maxalt = 10,
btinnermax = 100,
btoutermax = 100,
iwls = "exact",
nu = 1)
Arguments
X |
A list containing the 3 tensor components of the tensor design matrix. These are matrices of sizes |
Y |
The response values, an array of size |
Z |
The non tensor structrured part of the design matrix. A matrix of size |
family |
A string specifying the model family (essentially the response distribution). Possible values
are |
penalty |
A string specifying the penalty. Possible values are |
intercept |
Logical variable indicating if the model includes an intercept. When |
weights |
Observation weights, an array of size |
betainit |
A list (length 2) containing the initial parameter values for each of the parameter factors. Default is NULL in which case all parameters are initialized at 0.01. |
alphainit |
A |
nlambda |
The number of |
lambdaminratio |
The smallest value for |
lambda |
The sequence of penalty parameters for the regularization path. |
penaltyfactor |
A list of length two containing an array of size |
penaltyfactoralpha |
A |
reltolinner |
The convergence tolerance for the inner loop |
reltolouter |
The convergence tolerance for the outer loop. |
reltolalt |
The convergence tolerance for the alternation loop over the two parameter blocks. |
maxiter |
The maximum number of inner iterations allowed for each |
steps |
The number of steps used in the multi-step adaptive lasso algorithm for non-convex penalties. Automatically set to 1 when |
maxiterinner |
The maximum number of inner iterations allowed for each outer iteration. |
maxiterouter |
The maximum number of outer iterations allowed for each lambda. |
maxalt |
The maximum number of alternations over parameter blocks. |
btinnermax |
Maximum number of backtracking steps allowed in each inner iteration. Default is |
btoutermax |
Maximum number of backtracking steps allowed in each outer iteration. Default is |
iwls |
A string indicating whether to use the exact iwls weight matrix or use a tensor structured approximation to it. |
nu |
A number between 0 and 1 that controls the step size |
Details
Given the setting from glamlasso
we place a reduced rank
restriction on the p_1\times p_2\times p _3
parameter array B
given by
B=(B_{i,j,k})_{i,j,k} = (\gamma_{k}\kappa_{i,j})_{i,j,k}, \ \ \ \gamma_k,\kappa_{i,j}\in \mathcal{R}.
The glamlassoRR
function solves the PMLE problem by combining a
block relaxation scheme with the gdpg algorithm. This scheme alternates
between optimizing over the first parameter block \kappa=(\kappa_{i,j})_{i,j}
and the second block \gamma=(\gamma_k)_k
while fixing the second resp.
first block.
Note that the individual parameter blocks are only identified up to a
multiplicative constant. Also note that the algorithm is sensitive to
inital values betainit
which can prevent convergence.
Value
An object with S3 Class "glamlasso".
spec |
A string indicating the model family and the penalty. |
coef12 |
A |
coef3 |
A |
alpha |
A |
lambda |
A vector containing the sequence of penalty values used in the estimation procedure. |
df |
The number of nonzero coefficients for each value of |
dimcoef |
A vector giving the dimension of the model coefficient array
|
dimobs |
A vector giving the dimension of the observation (response)
array |
Iter |
A list with 4 items: |
Author(s)
Adam Lund
Maintainer: Adam Lund, adam.lund@math.ku.dk
References
Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale generalized linear array models. Journal of Computational and Graphical Statistics, 26, 3, 709-724. url = https://doi.org/10.1080/10618600.2017.1279548.
Lund, A. and N. R. Hansen (2019). Sparse Network Estimation for Dynamical Spatio-temporal Array Models. Journal of Multivariate Analysis, 174. url = https://doi.org/10.1016/j.jmva.2019.104532.
Examples
##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4
##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)
Beta12 <- matrix(rnorm(p1 * p2), p1, p2) * matrix(rbinom(p1 * p2, 1, 0.5), p1, p2)
Beta3 <- matrix(rnorm(p3) * rbinom(p3, 1, 0.5), p3, 1)
Beta <- outer(Beta12, c(Beta3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, Mu), dim = c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y))
modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 3))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12, fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)
###with non tensor design component Z
q <- 5
alpha <- matrix(rnorm(q)) * rbinom(q, 1, 0.5)
Z <- matrix(rnorm(n1 * n2 * n3 * q), n1 * n2 * n3, q)
Y <- array(rnorm(n1 * n2 * n3, Mu + array(Z %*% alpha, c(n1, n2, n3))), c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y, Z))
modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(2, 2))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12,fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
plot(c(alpha), ylim = range(alpha, fit$alpha[, modelno]), type = "h")
points(c(alpha))
lines(fit$alpha[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)
################ poisson example
set.seed(7954) ## for this seed the algorithm fails to converge for default initial values!!
set.seed(42)
##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4
##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)
Beta12 <- matrix(rnorm(p1 * p2, 0, 0.5) * rbinom(p1 * p2, 1, 0.1), p1, p2)
Beta3 <- matrix(rnorm(p3, 0, 0.5) * rbinom(p3, 1, 0.5), p3, 1)
Beta <- outer(Beta12, c(Beta3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rpois(n1 * n2 * n3, exp(Mu)), dim = c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y ,family = "poisson"))
modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 3))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12, fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)