| gkmsvm_trainCV {gkmSVM} | R Documentation | 
Training the SVM model, using repeated CV to tune parameter C and plot ROC curves
Description
Using the kernel matrix created by 'gkmsvm_kernel', this function trains the SVM classifier. It uses repeated CV to find optimum SVM parameter C. Also generates ROC and PRC curves.
Usage
gkmsvm_trainCV(kernelfn, posfn, negfn, svmfnprfx=NA, 
  nCV=5, nrepeat=1, cv=NA, Type="C-svc", C=1, shrinking=FALSE, 
  showPlots=TRUE, outputPDFfn=NA,  outputCVpredfn=NA, outputROCfn=NA, ...)Arguments
| kernelfn | kernel matrix file name | 
| posfn | positive sequences file name | 
| negfn | negative sequences file name | 
| svmfnprfx | (optional) output SVM model file name prefix | 
| nCV | (optional) number of CV folds | 
| nrepeat | (optional) number of repeated CVs | 
| cv | (optional) CV group label. An array of length (npos+nneg), containing CV group number (between 1 an nCV) for each sequence | 
| Type | (optional) SVM type (default='C-svc'), see 'kernlab' documentation for more details. | 
| C | (optional)a vector of all values of C (SVM parameter) to be tested. (default=1), see 'kernlab' documentation for more details. | 
| shrinking | optional: shrinking parameter for kernlab (default=FALSE), see 'kernlab' documentation for more details. | 
| showPlots | generate plots (default==TRUE) | 
| outputPDFfn | filename for output PDF, default=NA (no PDF output) | 
| outputCVpredfn | filename for output cvpred (predicted CV values), default=NA (no output) | 
| outputROCfn | filename for output auROC (Area Under an ROC Curve) and auPRC (Area Under the Precision Recall Curve) values, default=NA (no output) | 
| ... | optional: additional SVM parameters, see 'kernlab' documentation for more details. | 
Details
Trains SVM classifier and generates two files: [svmfnprfx]_svalpha.out for SVM alphas and the other for the corresponding SV sequences ([svmfnprfx]_svseq.fa)
Author(s)
Mahmoud Ghandi
Examples
  #Input file names:  
  posfn= 'test_positives.fa'   #positive set (FASTA format)
  negfn= 'test_negatives.fa'   #negative set (FASTA format)
  testfn= 'test_testset.fa'    #test set (FASTA format)
  
  #Output file names:  
  kernelfn= 'test_kernel.txt' #kernel matrix
  svmfnprfx= 'test_svmtrain'  #SVM files 
  outfn =   'output.txt'      #output scores for sequences in the test set       
#  gkmsvm_kernel(posfn, negfn, kernelfn);                #computes kernel 
#  cvres = gkmsvm_trainCV(kernelfn,posfn, negfn, svmfnprfx, 
#      outputPDFfn='ROC.pdf', outputCVpredfn='cvpred.out');    
#      #trains SVM, plots ROC and PRC curves, and outputs model predictions.
#  gkmsvm_classify(testfn, svmfnprfx, outfn);            #scores test sequences