gjamSimData {gjam} | R Documentation |
Simulated data for gjam analysis
Description
Simulates data for analysis by gjam
.
Usage
gjamSimData(n = 1000, S = 10, Q = 5, x = NULL, nmiss = 0, typeNames, effort = NULL)
Arguments
n |
Sample size |
S |
Number of response variables (columns) in |
Q |
Number of predictors (columns) in design matrix |
x |
design |
nmiss |
Number of missing values to in |
typeNames |
Character vector of data types, see Details |
effort |
List containing ' |
Details
Generates simulated data and parameters for analysis by gjam
. Because both parameters and data are stochastic, not all simulations will give good results.
typeNames
can be 'PA
' (presenceAbsence), 'CA
'
(continuous), 'DA
' (discrete), 'FC
' (fractional composition),
'CC
' (count composition), 'OC
' (ordinal counts), and 'CAT
' (categorical levels). If more than one 'CAT'
is included, each defines a multilevel categorical reponse.
One additional type, 'CON
' (continuous), is not censored at zero by default.
If defined as a single character
value typeNames
applies to all columns in y
. If not, typeNames
is length-S
character vector
, identifying each response by column in y
. If a column 'CAT'
is included, a random number of levels will be generated, a, b, c, ...
.
A more detailed vignette is can be obtained with:
browseVignettes('gjam')
website 'http://sites.nicholas.duke.edu/clarklab/code/'.
Value
formula |
R formula for model, e.g., |
xdata |
|
ydata |
|
y |
response as a |
w |
|
typeY |
vector of data types corresponding to columns in |
typeNames |
vector of data types corresponding to columns in |
trueValues |
list containing true parameter values |
effort |
see Arguments. |
Author(s)
James S Clark, jimclark@duke.edu
References
Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2016. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs 87, 34-56.
See Also
Examples
## Not run:
## ordinal data, show true parameter values
sim <- gjamSimData(S = 5, typeNames = 'OC')
sim$ydata[1:5,] # example data
sim$trueValues$cuts # simulated partition
sim$trueValues$beta # coefficient matrix
## continuous data censored at zero, note latent w for obs y = 0
sim <- gjamSimData(n = 5, S = 5, typeNames = 'CA')
sim$w
sim$y
## continuous and discrete data
types <- c(rep('DA',5), rep('CA',4))
sim <- gjamSimData(n = 10, S = length(types), Q = 4, typeNames = types)
sim$typeNames
sim$ydata
## composition count data
sim <- gjamSimData(n = 10, S = 8, typeNames = 'CC')
totalCount <- rowSums(sim$ydata)
cbind(sim$ydata, totalCount) # data with sample effort
## multiple categorical responses - compare matrix y and data.frqme ydata
types <- rep('CAT',2)
sim <- gjamSimData(S = length(types), typeNames = types)
head(sim$ydata)
head(sim$y)
## discrete abundance, heterogeneous effort
S <- 5
n <- 1000
ef <- list( columns = 1:S, values = round(runif(n,.5,5),1) )
sim <- gjamSimData(n, S, typeNames = 'DA', effort = ef)
sim$effort$values[1:20]
## combinations of scales, partition only for 'OC' columns
types <- c('OC','OC','OC','CC','CC','CC','CC','CC','CA','CA','PA','PA')
sim <- gjamSimData(S = length(types), typeNames = types)
sim$typeNames
head(sim$ydata)
sim$trueValues$cuts
## End(Not run)