gjamSensitivity {gjam} | R Documentation |
Sensitivity coefficients for gjam
Description
Evaluates sensitivity coefficients for full response matrix or subsets of it.
Uses output from gjam
. Returns a matrix
of samples by predictors.
Usage
gjamSensitivity(output, group = NULL, nsim = 100, PERSPECIES = TRUE)
Arguments
output |
object fitted with |
group |
|
nsim |
number of samples from posterior distribution. |
PERSPECIES |
divide variance by number of species in the group |
Details
Sensitivity to predictors of entire reponse matrix or a subset of it, identified by the character string group
. The equations for sensitivity are given here:
browseVignettes('gjam')
Value
Returns a nsim
by predictor matrix of sensitivities to predictor variables, evaluated by draws from the posterior. Because sensitivities may be compared across groups represented by different numbers of species, PERSPECIES = TRUE
returns sensitivity on a per-species basis.
Author(s)
James S Clark, jimclark@duke.edu
References
Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2017. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs, 87, 34-56.
See Also
gjamSimData
simulates data
A more detailed vignette is can be obtained with:
browseVignettes('gjam')
website 'http://sites.nicholas.duke.edu/clarklab/code/'.
Examples
## Not run:
## combinations of scales
types <- c('DA','DA','OC','OC','OC','OC','CC','CC','CC','CC','CC','CA','CA','PA','PA')
f <- gjamSimData(S = length(types), typeNames = types)
ml <- list(ng = 50, burnin = 5, typeNames = f$typeNames)
out <- gjam(f$formula, f$xdata, f$ydata, modelList = ml)
ynames <- colnames(f$y)
group <- ynames[types == 'OC']
full <- gjamSensitivity(out)
cc <- gjamSensitivity(out, group)
nt <- ncol(full)
ylim <- range(rbind(full, cc))
boxplot( full, boxwex = 0.25, at = 1:nt - .21, col='blue', log='y',
ylim = ylim, xaxt = 'n', xlab = 'Predictors', ylab='Sensitivity')
boxplot( cc, boxwex = 0.25, at = 1:nt + .2, col='forestgreen', add=T,
xaxt = 'n')
axis(1,at=1:nt,labels=colnames(full))
legend('bottomleft',c('full response','CC data'),
text.col=c('blue','forestgreen'))
## End(Not run)