gjamPriorTemplate {gjam} | R Documentation |
Prior coefficients for gjam analysis
Description
Constructs coefficient matrices for low and high limits on the uniform prior distribution for beta
.
Usage
gjamPriorTemplate(formula, xdata, ydata, lo = NULL, hi = NULL)
Arguments
formula |
object of class |
xdata |
|
ydata |
|
lo |
|
hi |
|
Details
The prior distribution for a coefficient beta[q,s]
for predictor q
and response s
, is dunif(lo[q,s], hi[q,s])
. gjamPriorTemplate
generates these matrices. The default values are (-Inf, Inf
), i.e., all values in lo
equal to -Inf
and hi
equal to Inf
. These templates can be modified by changing specific values in lo
and/or hi
.
Alternatively, desired lower limits can be passed as the list lo
, assigned to names in xdata
(same limit for all species in ydata
), in ydata
(same limit for all predictors in xdata
), or both, separating names in xdata
and ydata
by "_"
. The same convention is used for upper limits in hi
.
These matrices are supplied in as list betaPrior
, which is included in modelList
passed to gjam
. See examples and browseVignettes('gjam')
.
Note that the informative prior slows computation.
Value
A list
containing two matrices. lo
is a Q x S matrix
of lower coefficient limits. hi
is a Q x S matrix
of upper coefficient limits. Unless specied in lo
, all values in lo = -Inf
. Likewise, unless specied in hi
, all values in hiBeta = -Inf
.
Author(s)
James S Clark, jimclark@duke.edu
References
Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2017. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs 87, 34-56.
See Also
Examples
## Not run:
library(repmis)
source_data("https://github.com/jimclarkatduke/gjam/blob/master/forestTraits.RData?raw=True")
xdata <- forestTraits$xdata
plotByTree <- gjamReZero(forestTraits$treesDeZero) # re-zero
traitTypes <- forestTraits$traitTypes
specByTrait <- forestTraits$specByTrait
tmp <- gjamSpec2Trait(pbys = plotByTree, sbyt = specByTrait,
tTypes = traitTypes)
tTypes <- tmp$traitTypes
traity <- tmp$plotByCWM
censor <- tmp$censor
formula <- as.formula(~ temp + deficit)
lo <- list(temp_gmPerSeed = 0, temp_dioecious = 0 ) # positive effect on seed size, dioecy
b <- gjamPriorTemplate(formula, xdata, ydata = traity, lo = lo)
ml <- list(ng=3000, burnin=1000, typeNames = tTypes, censor = censor, betaPrior = b)
out <- gjam(formula, xdata, ydata = traity, modelList = ml)
S <- ncol(traity)
sc <- rep('black',S)
sc[colnames(traity)
pl <- list(specColor = sc)
gjamPlot(output = out, plotPars = pl)
## End(Not run)