gparetoIV {giniVarCI} | R Documentation |
Gini index for the Pareto (IV) distribution with user-defined location, scale, inequality and shape parameters
Description
Calculates the Gini index for the Pareto (IV) distribution with location
parameter a
, scale
parameter b
, inequality
parameter g
and shape
parameter s
.
Usage
gparetoIV(
location = 0,
scale = 1,
inequality = 1,
shape = 1
)
Arguments
location |
A non-negative real number specifying the location parameter |
scale |
A positive real number specifying the scale parameter |
inequality |
A positive real number specifying the inequality parameter |
shape |
A positive real number specifying the shape parameter |
Details
The Pareto (IV) distribution with location
parameter a
, scale
parameter b
, inequality
parameter g
, shape
parameter s
and denoted as ParetoIV(a,b,g,s)
, where a \geq 0
, b>0
, g>0
and s>0
, has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995; Yee, 2022)
f(y)= \displaystyle \frac{s}{bg} \left( \frac{y-a}{b}\right)^{1/g-1} \left[1 + \left( \frac{y-a}{b}\right)^{1/g} \right]^{-(s+1)},
and a cumulative distribution function given by
F(y)=1- \left[1 + \displaystyle \left( \frac{y-a}{b}\right)^{1/g} \right]^{-s},
where y>a
.
The Gini index can be computed as
G = 2\left(0.5 - \displaystyle \frac{1}{E[y]}\int_{0}^{1}\int_{0}^{Q(y)}yf(y)dy\right),
where Q(y)
is the quantile function of the Pareto (IV) distribution, and E[y]
is the expectation of the distribution. If location
is not specified it assumes the default value of 0, and the remaining parameters assume the default value of 1. The Pareto (IV) distribution is related to:
1. The Burr distribution: ParetoIV(0,b,g,s) = BurrXII(b,1/g,s)
.
2. The Pareto (I) distribution: ParetoIV(b,b,1,s) = ParetoI(b,s)
.
3. The Pareto (II) distribution: ParetoIV(a,b,1,s) = ParetoII(a,b,s)
.
4. The Pareto (III) distribution: ParetoIV(a,b,g,1) = ParetoIII(a,b,g)
.
Value
A numeric value with the Gini index. A NA
is returned when a parameter is non-numeric or positive, except for the location parameter that can be equal to 0.
Author(s)
Juan F Munoz jfmunoz@ugr.es
Jose M Pavia pavia@uv.es
Encarnacion Alvarez encarniav@ugr.es
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 14. Wiley, New York.
Yee, T. W. (2022). VGAM: Vector Generalized Linear and Additive Models. R package version 1.1-7, https://CRAN.R-project.org/package=VGAM.
See Also
gpareto
, gparetoI
, gparetoII
, gparetoIII
, gdagum
, gburr
, gfisk
Examples
# Gini index for the Pareto (IV) distribution with 'a = 1', 'b = 1', 'g = 0.5', 's = 1'.
gparetoIV(location = 1, scale = 1, inequality = 0.5, shape = 1)
# Gini index for the Pareto (IV) distribution with 'a = 1', 'b = 1', 'g = 2', 's = 3'.
gparetoIV(location = 1, scale = 1, inequality = 2, shape = 3)