gpareto {giniVarCI} | R Documentation |
Gini index for the Pareto distribution with user-defined shape parameters
Description
Calculates the Gini indices for the Pareto distribution with shape
parameters \alpha
.
Usage
gpareto(shape)
Arguments
shape |
A vector of positive real numbers specifying shape parameters |
Details
The Pareto distribution with scale parameter k
, shape
parameter \alpha
and denoted as Pareto(k, \alpha)
, where k>0
and \alpha>0
, has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995; Yee, 2022)
f(y)=\displaystyle \frac{\alpha k^{\alpha}}{y^{\alpha +1}},
and a cumulative distribution function given by
F(y) = \displaystyle 1 - \left(\frac{k}{y}\right)^{\alpha},
where y \geq k
.
The Gini index can be computed as
G = \left\{
\begin{array}{cl}
1 , & 0<\alpha <1; \\
\displaystyle \frac{1}{2\alpha-1}, & \alpha \geq 1.
\end{array}
\right.
Value
A numeric vector with the Gini indices. A NA
is returned when a shape parameter is non-numeric or non-positive.
Note
The Gini index of the Pareto distribution does not depend on the shape parameter.
Author(s)
Juan F Munoz jfmunoz@ugr.es
Jose M Pavia pavia@uv.es
Encarnacion Alvarez encarniav@ugr.es
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 14. Wiley, New York.
Yee, T. W. (2022). VGAM: Vector Generalized Linear and Additive Models. R package version 1.1-7, https://CRAN.R-project.org/package=VGAM.
See Also
gparetoI
, gparetoII
, gparetoIII
, gparetoIV
, gdagum
, gburr
, gfisk
Examples
# Gini index for the Pareto distribution with 'shape = 2'.
gpareto(shape = 2)
# Gini indices for the Pareto distribution and different shape parameters.
gpareto(shape = 1:5)