gdagum {giniVarCI} | R Documentation |
Gini index for the Dagum distribution with user-defined shape parameters
Description
Calculates the Gini index for the Dagum distribution with shape parameters a
(shape1.a
) and p
(shape2.p
).
Usage
gdagum(shape1.a, shape2.p)
Arguments
shape1.a |
A positive real number specifying the shape1 parameter |
shape2.p |
A positive real number specifying the shape parameter |
Details
The Dagum distribution with scale parameter b
, shape parameters a
(argument shape1.a
) and p
(argument shape2.p
) and denoted as Dagum(b,a,p)
, where b>0
, a>0
and p>0
,
has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995; Rodriguez, 1977; Yee, 2022)
f(y) = \displaystyle \frac{ap}{y}\frac{\left(\frac{y}{b}\right)^{ap}}{ \left[\left(\frac{y}{b} \right)^{a} + 1 \right]^{p+1} },
and a cumulative distribution function given by
F(y)= \left[1 + \displaystyle \left( \frac{y}{b}\right)^{-a} \right]^{-p},
where y > 0
.
The Gini index can be computed as
G = \displaystyle \frac{\Gamma(p)\Gamma(2p+1/a)}{\Gamma(2p)\Gamma(p+1/a)}-1,
where the gamma function is defined as
\Gamma(\alpha) = \int_{0}^{\infty}t^{\alpha-1}e^{-t}dt.
The Dagum distribution is also known the Burr III, inverse Burr, beta-K, or 3-parameter kappa distribution. The Dagum distribution is related to the Fisk (Log Logistic) distribution: Dagum(b,a,1) = Fisk(b,a)
. The Dagum distribution is also related to the inverse Lomax distribution and the inverse paralogistic distribution (see Kleiber and Kotz, 2003; Johnson et al., 1995; Yee, 2022).
Value
A numeric value with the Gini index. A NA
is returned when a shape parameter is non-numeric or non-positive.
Note
The Gini index of the Dagum distribution does not depend on its scale parameter.
Author(s)
Juan F Munoz jfmunoz@ugr.es
Jose M Pavia pavia@uv.es
Encarnacion Alvarez encarniav@ugr.es
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 14. Wiley, New York.
Yee, T. W. (2022). VGAM: Vector Generalized Linear and Additive Models. R package version 1.1-7, https://CRAN.R-project.org/package=VGAM.
See Also
gburr
, gpareto
, gfisk
, ggompertz
, gfrechet
Examples
# Gini index for the Dagum distribution with shape parameters 'a = 2' and 'p = 20'.
gdagum(shape1.a = 2, shape2.p = 20)