gburr {giniVarCI} | R Documentation |
Gini index for the Burr Type XII (Singh-Maddala) distribution with user-defined scale and shape parameters
Description
Calculates the Gini index for the Burr Type XII (Singh-Maddala) distribution with scale
parameter and shape parameters
(
shape.g
) and (
shape.s
).
Usage
gburr(
scale = 1,
shape.g = 1,
shape.s = 1
)
Arguments
scale |
A positive real number specifying the scale parameter |
shape.g |
A positive real number specifying the shape parameter |
shape.s |
A positive real number specifying the shape parameter |
Details
The Burr Type XII (Singh-Maddala) distribution with scale
parameter , shape parameters
(argument
shape.g
) and (argument
shape.s
) and denoted as , where
,
and
, has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995; Rodriguez, 1977; Yee, 2022)
and a cumulative distribution function given by
where .
The Gini index can be computed as
where
is the quantile function of the Burr Type XII (Singh-Maddala) distribution, and
is the expectation of the distribution. The Burr Type XII (Singh-Maddala) distribution is related to the Pareto (IV) distribution:
.
Value
A numeric value with the Gini index. A NA
is returned when any of the parameter is non-numeric or non-positive.
Author(s)
Juan F Munoz jfmunoz@ugr.es
Jose M Pavia pavia@uv.es
Encarnacion Alvarez encarniav@ugr.es
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, volume 1, chapter 14. Wiley, New York.
Rodriguez, R. N. (1977). A guide to the Burr type XII distributions. Biometrika, 64(1), 129-134.
Yee, T. W. (2022). VGAM: Vector Generalized Linear and Additive Models. R package version 1.1-7, https://CRAN.R-project.org/package=VGAM.
See Also
gparetoIV
, gpareto
, gparetoI
, gparetoII
, gparetoIII
, gfisk
Examples
# Gini index for the Burr Type XII distribution with 'scale = 1', 'shape.g = 2', 'shape.s = 1'.
gburr(scale = 1, shape.g = 2, shape.s = 1)
# Gini index for the Burr Type XII distribution with 'scale = 1', 'shape.g = 5', 'shape.s = 3'.
gburr(scale = 1, shape.g = 5, shape.s = 3)