gigg {gigg} | R Documentation |
GIGG regression
Description
Perform GIGG (Group Inverse-Gamma Gamma) regression. This package implements a Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation.
Usage
gigg(
X,
C,
Y,
method = "mmle",
grp_idx,
alpha_inits = rep(0, ncol(C)),
beta_inits = rep(0, ncol(X)),
a = rep(0.5, length(unique(grp_idx))),
b = rep(0.5, length(unique(grp_idx))),
sigma_sq_init = 1,
tau_sq_init = 1,
n_burn_in = 500,
n_samples = 1000,
n_thin = 1,
verbose = TRUE,
btrick = FALSE,
stable_solve = TRUE
)
Arguments
X |
A (n x p) matrix of covariates that to apply GIGG shrinkage on. |
C |
A (n x k) matrix of covariates that to apply no shrinkage on (typically intercept + adjustment covariates). |
Y |
A length n vector of responses. |
method |
Either |
grp_idx |
A length p integer vector indicating which group of the G groups the p covariates in X belong to.
The |
alpha_inits |
A length k vector containing initial values for the regression coefficients corresponding to C. |
beta_inits |
A length p vector containing initial values for the regression coefficients corresponding to X. |
a |
A length G vector of shape parameters for the prior on the group shrinkage parameters.
The |
b |
A length G vector of shape parameters for the prior on the individual shrinkage parameters. If |
sigma_sq_init |
Initial value for the residual error variance (double). |
tau_sq_init |
Initial value for the global shrinkage parameter (double). |
n_burn_in |
The number of burn-in samples (integer). |
n_samples |
The number of posterior draws (integer). |
n_thin |
The thinning interval (integer). |
verbose |
Boolean value which indicates whether or not to print the progress of the Gibbs sampler. |
btrick |
Boolean value which indicates whether or not to use the computational trick in Bhattacharya et al. (2016). Only recommended if number of covariates is much larger than the number of observations. |
stable_solve |
Boolean value which indicates whether or not to use Cholesky decomposition during the update of the regression coefficients corresponding to X. In our experience, |
Value
A list containing
"draws" - A list containing the posterior draws of
(1) the regression coefficients (alphas and betas)
(2) the individual shrinkage parameters (lambda_sqs)
(3) the group shrinkage parameters (gamma_sqs)
(4) the global shrinkage parameter (tau_sqs) and
(5) the residual error variance (sigma_sqs).
The list also contains details regarding the dataset (X, C, Y, grp_idx) and Gibbs sampler details (n_burn_in, n_samples, and n_thin)."beta.hat" - Posterior mean of betas
"beta.lcl.95" - 95% credible interval lower bound of betas
"beta.ucl.95" - 95% credible interval upper bound of betas
"alpha.hat" - Posterior mean of alpha
"alpha.lcl.95" - 95% credible interval lower bound of alphas
"alpha.ucl.95" - 95% credible interval upper bound of alphas
"sigma_sq.hat" - Posterior mean of sigma squared
"sigma_sq.lcl.95" - 95% credible interval lower bound of sigma sq.
"sigma_sq.ucl.95" - 95% credible interval upper bound of sigma sq.
References
Boss, J., Datta, J., Wang, X., Park, S.K., Kang, J., & Mukherjee, B. (2021). Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Block-Correlated Predictors. arXiv
Examples
X = concentrated$X
C = concentrated$C
Y = as.vector(concentrated$Y)
grp_idx = concentrated$grps
alpha_inits = concentrated$alpha
beta_inits = concentrated$beta
gf = gigg(X, C, Y, method = "fixed", grp_idx, alpha_inits, beta_inits,
n_burn_in = 200, n_samples = 500, n_thin = 1,
verbose = TRUE, btrick = FALSE, stable_solve = FALSE)
gf_mmle = gigg(X, C, Y, method = "mmle", grp_idx, alpha_inits, beta_inits,
n_burn_in = 200, n_samples = 500, n_thin = 1,
verbose = TRUE, btrick = FALSE,
stable_solve = FALSE)